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Abstract

We study firms’ strategic interactions when each firm may own multiple pro-
duction technologies, each with its own marginal cost and capacity. Increasing in-
dustry concentration by reallocating non-efficient capacity to the largest and most
efficient firm can decrease market prices as it incentivizes the firm to outcompete
its rivals. However, with large reallocations, the standard monotonic relationship
between concentration and prices re-emerges as competition weakens due to the ri-
val’s lower capacity. Thus, we demonstrate a U-shaped relationship between market
prices and industry concentration when firms are diversified. This result does not
rely on economies of scale or scope. We find consistent evidence from the Colom-
bian wholesale energy market, where strategic firms are diversified with fossil-fuel
and renewable technologies, exploiting exogenous variation in renewable capacities.
Our findings not only apply to the green transition but also to other industries and
suggest new insights for antitrust policies.
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1 Introduction

Economic models typically assume firms use a single technology or production function,

resulting in a single marginal cost for any level of production (e.g., Olley and Pakes,

1996). However, firms can often produce the same good using multiple technologies,

each with different capacities and marginal costs. These technologies can act as substi-

tutes, replacing each other in production or as complements, providing a firm with the

opportunity to influence market prices by simultaneously producing with different tech-

nologies. Nonetheless, there is a lack of understanding about how firms make production

and pricing decisions with multiple technologies. This gap is crucial for energy firms,

where environmental challenges require them to diversify their technology portfolio by

including renewables (e.g., Elliott, 2024, Gonzales et al., 2023).1

How do firms with multiple production techonologies compete? In this paper, we

define a firm as diversified if it can produce the same good using technologies with differ-

ent marginal costs and capacities. We introduce new theoretical and empirical evidence

to study the strategic decisions of such firms. Our analysis is based on the Colombian

wholesale energy market, where major suppliers own both renewable (dams) and conven-

tional thermal generators (fossil fuels). Droughts provide exogenous variations in a firm’s

renewable capacities without affecting those of conventional generators. Typically, a firm

responds to a drought by reducing its hydropower supply, which increases the market

price but lowers the firm’s market share. A diversified firm, however, can maintain its

market share by increasing production with its conventional generators, as illustrated in

Figure 1. This additional supply (gap between red and blue curves) lowers the market

price and helps the firm conserve water, as production shifts from hydro to conventional

sources. The steeper the firm’s demand curve, the greater its market power, but the more

prices will drop as the firm increases its conventional supply. This demonstrates how con-

siderations of market power become non-trivial with diversified firms. Similar incentives

may arise in other industries due to mergers (e.g., Morck et al., 1990, Atalay et al., 2019)

or trade disruptions altering firms’ boundaries (e.g., Acemoglu and Tahbaz-Salehi, 2024).

Our main finding is a novel U-shaped relationship between market prices and industry

concentration when firms are diversified and face uncertain demand. This U-shaped pat-

tern arises because a firm with a highly efficient technology can disrupt its competitors by

producing at their marginal cost, potentially driving them out of the market. When the

market leader has limited efficient capacity, we show that reallocating a small amount

of inefficient capacity from its competitors to the market leader incentivizes the leader

to crowd them out further in low-demand scenarios while relying on the newly added

inefficient capacity in high-demand situations. This increase in market concentration can

1Other industries where firms have typically diversified technology portfolio are mining, telecommu-
nication, and aluminium.
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Figure 1: Impact of scarcity on non-affected generators
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The figure plots the supply schedule of the non-hydropower generators owned by a Colombian diversified
energy firm when it either faces scarcity (red dashed line) or not at its dams. Scarcity is defined
as observing a water inflow in the first two deciles of its distribution. The red supply schedule was
submitted by ENDG on December 12, 2010 at noon, whereas the blue schedule was submitted two weeks
before. Total demand differ by less than 1% in the two markets.

lower market prices as competitors expand their supply to maintain market shares. Con-

versely, complete crowding out may not always be the optimal strategy, as a firm might

prefer raising prices when competition decreases. We demonstrate that large capacity

reallocations increase prices as competition weakens due to rivals’ low capacity, resulting

in a U-shaped relationship between prices and industry concentration. Quantitatively,

our structural model finds that prices drop by up to 10% for small capacity reallocations

to the market leader but increase substantially for larger transfers.

Thus, the impact of concentration on prices hinges on two factors: the efficiency

of each technology a firm possesses and its overall capacity, which generate Bertrand

and Cournot forces, respectively. Market prices generally decrease with small capac-

ity reallocations as firms employ their most efficient technology more but increase with

larger reallocations, forming a U-shaped pattern. In contrast, prices will always rise with

concentration if the market leader has abundant low-cost capacity, because, in essence,

the leader is not diversified, eliminating any crowding-out incentives. The latter result

echoes standard trade and industrial organization models (e.g., Atkeson and Burstein,

2008, Nocke and Whinston, 2022), where markups increase with a firm’s market share,

justifying the usage of Herfindahl Indices (HHI) as a measure of industry market power. A

consequence of our results is that such measures lose meaning when firms are diversified.

More broadly, in oligopolistic industries where the efficient technology is scarce, a

larger diversified market leader might result in smaller market prices than if its inefficient

technology were allocated to a smaller rival. Our results also extend to studying the price

effect of mergers rather than capacity transfers while relaxing the common assumption
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that the new firm’s marginal cost equals the minimum of the merging parties. Our insights

find applications across diverse sectors. For example, in the industrial sectors, firms

commonly produce aluminum with various technologies (Collard-Wexler and De Loecker,

2015). In oil and gas, a firm owns reservoirs with different costs and capacities (Asker

et al., 2019, Fioretti et al., 2022). In healthcare, hospitals can complement doctors’ advice

with cheaper artificial intelligence algorithms (Agarwal et al., 2023).

We theoretically examine the behavior of diversified firms through a static

homogeneous-good oligopoly game where firms confront demand uncertainty and own

both low- and high-cost technologies, representing hydropower and thermal generation,

respectively.2 Each technology features its own cost curve, which becomes vertical at

capacity. A firm’s total cost is the horizontal sum of its technologies’ cost curves, and,

hence, it is increasing in the quantity produced. The equilibrium price is determined

by firms submitting supply schedules detailing the quantity they are willing to produce

at various market prices, following the supply function equilibrium concept proposed by

Klemperer and Meyer (1989). This concept, unlike traditional models such as Cournot

and Bertrand, is ex-post optimal and encompasses them as extreme cases by permitting

any non-negative slope at different market prices.3

Initially, in this market, no firm is diversified and the largest firm also has the most

efficient technology. We then study what happens when we diversify it by reallocating

high-cost capacity to this market-leading firm in different scenarios. If the leader’s low-

cost capacity was substantially larger than that of its rivals before the transfer, as under

the abundance of hydropower, we find that the transfer reduces its rivals’ ability to

compete, leading to higher prices. Therefore, when the leader’s market power comes

from its total size, reallocating capacity to the leader effectively “removes resources from

the market,” as the leader prioritizes its low-cost technology in production over the high-

cost one to minimize costs, following the so-called merit order.

Conversely, the same reallocation of high-cost capacity “brings capacity back into the

market” when the leader’s relative capacity advantage is not as large even though being

the largest firm. Because of the merit order, the new capacity will be produced only

after the exhaustion of its low-cost one, hence only in high-demand situations. However,

the firm cannot expand its supply only from a high price onward because this strategy

encourages undercutting by its rivals. Hence, both the market leader and its competi-

2We focus on a stylized static setting that relies only on strategic interactions between firms owning
multiple technologies with different marginal costs and capacities to highlight the generality of our
findings. When taking the model to the data, we allow for dynamic considerations as Colombian energy
generators respond to expected hydropower capacity changes.

3This theoretical framework (see also Wilson, 1979, Grossman, 1981) has found several applications
not only in energy markets (Green and Newbery, 1992), but also in financial markets (Hortaçsu et al.,
2018), government procurement contracts (Delgado and Moreno, 2004), management consulting, airline
pricing reservations (Vives, 2011), firm taxation (Ruddell et al., 2017), transportation networks (Holm-
berg and Philpott, 2015), and also relates to nonlinear pricing (e.g., Bornstein and Peter, 2022).
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tors expand their supply schedules, resulting in lower prices than before the reallocation

despite more capacity concentration. Importantly, standard synergies like economies of

scale play no role in this economy because average costs stay unchanged at the realized

market price. Therefore, our results illustrate two sources of market power when firms are

diversified: total capacity, driving prices up, and relative efficiency, driving them down.

Alternatively, if a significantly large portion of the high-cost capacity is transferred

to the market leader – imagine the extreme scenario where it becomes a monopolist –

we demonstrate that market prices invariably increase. This is because the firm can now

reduce its production to raise prices without losing inframarginal units, explaining the

U-shaped relationship between prices and concentration.

Our empirical investigation centers on the Colombian energy market for several rea-

sons. Firstly, all major players in this market operate diversified production, utilizing

a mix of hydropower and thermal energy. Secondly, regulatory requirements ensure the

availability of data on firms’ desired production for each technology they employ, a rarity

in many other industries. Thirdly, natural fluctuations in weather patterns provide an

exogenous factor affecting hydropower capacity, allowing us to study market power and

concentration without relying on potentially endogenous events like mergers.

To quantify the impact of diversification on market prices, we extend the theoretical

model to account for the main features of the Colombian energy market. In particular,

thermal capacity is consistently available, while dry and abundant spells directly influence

a firm’s hydropower capacity by altering the opportunity cost of its supply. Empirically,

we exploit variation in this opportunity cost as a shifter to a firm’s hydropower capacity,

as it does not affect its operating cost and the costs and capacities of other technologies.

To causally identify this U-shape in the data, we simulate market prices in different

scenarios where we exogenously endow the market-leading firm with increasing fractions

of its competitors’ thermal capacity. The model primitives – the marginal cost of thermal

and hydropower generators and the intertemporal opportunity cost of holding water –

are identified from the first-order conditions.4 We estimate the model on hourly markets

between 2010 and 2015 and show that the model fits the data well.

Our findings reveal that during droughts, average market prices decline by up to 10%

if we double the size of the market leader’s thermal capacity. However, for larger reallo-

cations, prices increase substantially, aligning with the conclusions from models featuring

non-diversified firms. During abundant periods, reallocations diminish rivals’ competi-

tiveness, resulting in higher market prices. Notably, the disparity in prices between dry

and abundant spells can be significant, with prices during droughts reaching up to ten

times higher. This underscores the welfare benefit of diversification, particularly evident

in situations where the low-cost technology is scarce.

4We build on the multi-unit (e.g., Wolak, 2007, Reguant, 2014) and dynamic auctions literature (e.g.,
Jofre-Bonet and Pesendorfer, 2003), and examine externalities across generators (e.g., Fioretti, 2022).
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Earlier investigations have warned against joining renewable and thermal generators

because when firms compete à la Cournot, they benefit by reducing their thermal supplies

when they also have renewables, as renewables induce a more inelastic demand (Bushnell,

2003, Acemoglu et al., 2017). In contrast, concurrent work by Fabra and Llobet (2023)

shows that diversifying suppliers competing à la Bertrand can lead to lower prices if a

firm has private information about its realized renewable capacity, as is common for solar

and wind farms.5 However, in our case, we observe different behavior: firms increase

rather than decrease thermal generation when facing scarcity.6

We provide a unifying account featuring results from both types of conduct that

allows us to discuss when diversifying production increases or decreases market prices.

Instead of asymmetric information, as Colombian suppliers are aware of each others’ water

stocks, we explain the thermal generators’ strategies through their market power, which

pushes them to steal market shares when they internalize higher prices due to scarcity.

As the storability of solar and wind resources continues to improve (Schmalensee, 2019,

Koohi-Fayegh and Rosen, 2020, Andrés-Cerezo and Fabra, 2023), we expect our results

to apply also to other renewables, in which case firms could substitute across renewables

technologies, without the need for polluting thermal generators, thereby speeding the

transition by solving renewables’ intermittency problems (Gowrisankaran et al., 2016,

Vehviläinen, 2021) and making it more affordable (Butters et al., 2021).

How might our findings guide policy decisions? Antitrust regulation emerges as an

innovative tool for driving down the costs of the green transition, complementing standard

approaches like subsidies (Acemoglu et al., 2012, Abrell et al., 2019, Ambec and Crampes,

2019). While existing literature examines subsidy regulations for renewable capacities and

grid integration to foster competition and maintain low energy prices (e.g., De Frutos

and Fabra, 2011, Ryan, 2021, Elliott, 2024, Gowrisankaran et al., 2022, Gonzales et al.,

2023), it often overlooks how ownership of new and old technologies affects pricing. Our

findings open new questions regarding firms’ efficient ownership structures. For example,

Colombia limits firms to holding no more than 25% of the total installed capacity to

prevent market power abuses. However, this threshold also hampers the advantages of

diversified production. Although determining the ideal threshold exceeds the scope of this

paper, we contend that it should vary according to a firm’s technological capabilities.

Despite an extensive literature questioning the treatment of capital as a homogeneous

input (e.g., Robinson, 1953, Solow, 1955, Sraffa, 1960), previous studies have primar-

ily focused on competition among multiproduct firms (e.g., Nocke and Schutz, 2018b)

or capacity constraints in firms operating with a single production technology (Kreps

and Scheinkman, 1983, Bresnahan and Suslow, 1989, Staiger and Wolak, 1992, Froeb

5In their setting, higher renewable capacity leads thermal generators of a diversified firm to bid more
aggressively for extra market shares because its renewable capacity makes the firm’s supply inframarginal.

6Also Garcia et al. (2001) and Crawford et al. (2007) studied competition across energy firms with
multiple generators but do not examine the downward price pressure created by capacity reallocations.
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et al., 2003).7 This paper explores how diversification generates strategic complementar-

ities within firms and across competitors. Our findings highlight two key implications.

First, conventional production function estimation methods may fail to capture produc-

tivity gains from factor-augmenting technologies (e.g., Demirer, 2022) without specific

technology-level data. Second, our results inform antitrust policies regarding divestitures

required of merging entities (Compte et al., 2002, Friberg and Romahn, 2015), suggesting

that divestitures could inadvertently raise prices by reducing technology diversification.8

The paper is structured as follows: Sections 2 and 3 introduce the Colombian whole-

sale market, describe the data, and present empirical patterns of supply decisions during

scarcity and abundance periods. Section 4 explains these patterns through a simple the-

oretical framework, which forms the basis of our empirical analysis developed in Sections

5 and 6. Finally, Section 7 concludes by discussing our contributions to antitrust policies

and the green transition.

2 The Colombian Wholesale Energy Market

This section provides an overview of the Colombian energy market, focusing on the avail-

able technologies and its institutions.

2.1 Generation

Colombia boasts a daily energy production of approximately 170 GWh.9 Between 2011

and 2015, the market featured around 190 generators owned by 50 firms. However,

it exhibits significant concentration, with six major firms possessing over 50% of all

generators and approximately 75% of total generation capacities. The majority of firms

operate a single generator with limited production capacity.

These major players diversify their portfolios, engaging in dam and other genera-

tion types, including thermal sources such as fossil fuel-based generators (coal and gas).

Additional sources comprise renewables like wind farms and run-of-river, which utilizes

turbines on rivers without water storage capabilities. Figure 2a illustrates the hourly

7In such models, concentration typically leads to higher markups (De Loecker et al., 2020, Benkard
et al., 2021, Grieco et al., 2023), with adverse effects on productivity (Gutiérrez and Philippon, 2017,
Berger et al., 2022) and the labor share (Autor et al., 2020). The endogeneous growth literature offers a
notable exception (e.g., Aghion et al., 2024), where firms may exhibit multiple production technologies
through green and brown patents, albeit without explicit consideration of capacity constraints.

8Relatedly, Nocke and Whinston (2022) propose that antitrust authorities adjust HHI thresholds
based on merger-induced synergies. These synergies, such as economy of scale or scope, differ from the
synergies we focus in our paper (e.g., Paul, 2001, Verde, 2008, Jeziorski, 2014, Miller et al., 2021, Demirer
and Karaduman, 2022, Elliott et al., 2023). The literature also highlights buyer concentration as a factor
decreasing consumer prices (Morlacco, 2019, Alviarez et al., 2023).

9For regional context, neighboring countries’ energy production in 2022 included 227 GWh in
Venezuela, 1,863 GWh in Brazil, 165 GWh in Peru, 91 GWh in Ecuador, and 33 GWh in Panama.
Globally, figures were 11,870 GWh in the US, 1,287 GWh in France, and 2,646 GWh in Japan.
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production capacities (MW) for each technology from 2008 to 2016, revealing that hy-

dropower (blue) and thermal capacity (black) constitute 60% and 30% of the industry’s

capacity, respectively. Run-of-river (green) accounts for less than 6%. Solar, wind, and

cogeneration technologies producing energy from other industrial processes are marginal.

Despite the presence of various sources, hydropower dominates production, averaging

around 75% of total dispatched units. The remaining energy needs are met by thermal

generation (approximately 20% of total production) and run-of-river (5%). However,

production varies over time, as shown in Panel (b) of the same figure, which contrasts

production across technologies with dry seasons represented by periods of high temper-

ature or low rainfall at dams (gray bars). During dry spells, hydropower production

decreases, and thermal generation compensates for water scarcity.10 Firms strategically

stockpile fossil fuels like coal and gas ahead of anticipated dry spells (Joskow, 2011), with

their prices closely tied to global commodity markets. In contrast, run-of-river energy

lacks storage capabilities, limiting its ability to offset hydropower shortages.

Thermal generation typically incurs higher marginal costs than hydropower. Figure

3 highlights that wholesale energy prices more than double during scarcity periods.11

Prices experienced a further increase during the sustained dry spell caused by El Niño in

2016 and the annual dry seasons (December to March).

2.2 Institutional Background

The Colombian wholesale energy market is an oligopolistic market with high barriers to

entry, as suggested by the fact that the total hourly capacity in Panel (a) of Figure 2 is

almost constant over time, and especially so in the period 2010-2015, on which we focus

in the following analysis. In this period, only nine generators entered the market (out of

190), all belonging to different fringe firms, leading to a mild increase in market capacity

(+4%). The market is highly regulated and consists of a spot and a forward market.

The spot market. The spot market, also known as day-ahead market, sets the output

of each generator. It takes the form of a multi-unit uniform-price auction in which

Colombian energy producers compete by submitting bids to produce energy the following

day. Through this bidding process, each generator submits one quantity bid per hour and

one price bid per day.12 Quantity bids state the maximum amount (MWh) a generator is

willing to produce in a given hour, while price bids indicate the lowest price (COP/MW)

acceptable for production. Each generator bids its own supply schedule, potentially

considering the payoffs to the other generators owned by the same firm, which we call

10Data reveals a correlation between thermal production and minimum rainfall at Colombian dams of
-0.32 (p-value ≤ 0.01) and 0.27 (p-value ≤ 0.01) for hydropower generation.

11The correlation of the average hourly price and rainfall is -0.28 (p-value ≤ 0.01). Prices are in
Colombian pesos (COP) per MWh and should be divided by 2,900 to get their euro per MWh equivalent.

12Participation in the spot market is mandatory for large generators with capacity over 20MW.
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Figure 2: Installed capacity and production volumes by technology over time

(a) Total installed capacity by technology
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(b) Total weekly production by technology
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Note: The figure illustrates the total installed capacity (top panel) and production volumes (bottom) by
technology. The vertical bars in Panel (b) refer to periods where a hydropower generator experiences a
temperature (rainfall) that is at least one standard deviation above (below) its long-run average.

siblings of the focal generator.

Spot market-clearing. Before bidding, the market operator (XM) provides all genera-

tors with estimated market demand for each hour of the following day. After bidding, XM

ranks bid schedules from least to most expensive to identify the lowest price satisfying

demand for each hour. XM communicates the auction outcomes or despacho economico

to all generators. During the production day, actual generation may differ due to pro-

duction constraints or transmission failures. The spot hourly price is set at the value of
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Figure 3: Market prices

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

1,800,000

01
−

20
08

04
−

20
08

08
−

20
08

12
−

20
08

03
−

20
09

07
−

20
09

11
−

20
09

02
−

20
10

06
−

20
10

10
−

20
10

01
−

20
11

05
−

20
11

09
−

20
11

01
−

20
12

04
−

20
12

08
−

20
12

12
−

20
12

03
−

20
13

07
−

20
13

11
−

20
13

02
−

20
14

06
−

20
14

10
−

20
14

01
−

20
15

05
−

20
15

09
−

20
15

01
−

20
16

04
−

20
16

08
−

20
16

12
−

20
16

Weeks

A
ve

ra
ge

 W
ee

kl
y 

P
ric

es
 (

C
O

P
/M

W
h)

High Temperature
Low Rainfall

Note: Average market prices across weeks. The vertical gray columns refer to periods where a hydropower
generator experiences a temperature (rainfall) that is at least one standard deviation above (below) its
long-run average. 2,900 COP ≃ 1 US$.

the price bid of the marginal generator, with all dispatched units paid the same price.13

Forward market. The forward market comprises bilateral contracts between pairs of

agents. These contracts allow agents to decide the financial position of each generator

weeks in advance, serving to hedge against uncertainty in spot market prices. In our

dataset, we observe each generator’s overall contract position for each hourly market.

2.3 Data

The data come from XM for the period 2006–2017. We observe all quantity and price

bids and forward contract positions. The data also includes the ownership, geolocaliza-

tion, and capacity for each generator, and daily water inflows and stocks for dams. We

complement this dataset with weather information drawn from the Colombian Institute of

Hydrology, Meteorology, and Environmental Studies (IDEAM). This information contains

daily measures of rainfall and temperature from 303 measurement stations.14

Rainfall forecasts are constructed using monthly summaries of el Niño, la Niña, and

the Southern Oscillation (ENSO), based on the NINO3.4 index from the International

Research Institute (IRI) of Columbia University.15 ENSO forecasts, published on the

13The price paid to thermal generators can vary due to startup costs, which are reimbursed (Balat et al.,
2022). Despite high barriers to entry, a central factor sustaining firms’ coordination efforts (Levenstein
and Suslow, 2006), there is no evidence of a cartel in the period we study (Bernasconi et al., 2023).

14For each generator, we compute a weighted average of the temperatures and rainfalls by all mea-
surement stations within 120 km, weighting each value by the inverse distance between generators and
stations. We account for the orography of the country when computing the distance between generators
and weather measurement stations, using information from the Agustin Codazzi Geographic Institute.

15ENSO is one of the most studied climate phenomena. It can lead to large-scale changes in pressures,
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19th of each month, provide probability forecasts for the following nine months, aiding

dams in predicting inflows. We have monthly information from 2004 to 2017.

This dataset is complemented with daily prices of oil, gas, coal, liquid fuels, and

ethanol – commodities integral to energy production through thermal or cogeneration

(e.g., sugar manufacturing) generators.

3 Diversified Production: Empirical Evidence

This section leverages exogenous variations in water inflow forecasts, impacting the capac-

ities of dams, to offer novel perspectives on the production decisions made by diversified

firms. Sections 3.1 and 3.2 delineate the empirical methodology and present the primary

findings. Finally, Section 3.3 examines the ramifications for market clearing prices.

3.1 Empirical Strategy

This section outlines the empirical strategy used to assess the responses of a firm’s hydro

and thermal supplies to variations in its hydropower capacity, utilizing data from periods

of drought and abundance within firms.

We construct inflow forecasts for each hydropower generator employing a flexible au-

toregressive distributed-lag (ARDL) model (Pesaran and Shin, 1995). In essence, these

forecasts are derived through OLS regressions of a generator’s weekly average net water

inflow, encompassing evaporation, on the water inflows in past weeks and past tempera-

tures, rainfalls, and el Niño probability forecasts. A two-year moving window is used to

generate monthly forecasts up to 5 months ahead for the period between 2010 and 2015,

where we observe little entry of new plans and no new dams. The forecasting technique

is discussed in detail in Appendix B, which also presents goodness of fit statistics.

We investigate generators’ reactions to forthcoming inflows by analyzing the equation:

yij,th =
L∑
l=1

(
βlow
l adverseij,t+l + βhigh

l favorableij,t+l

)
+ xij,t−1α + µj,m(t) + τt + τh + ϵij,th.

(1)

This equation explores how generator j of firm i updates its current supply schedule yij,th

based on anticipations of favorable (favorableij,t+l) or adverse (adverseij,t+l) forecasts l

months ahead relative to its average forecast. To minimize autocorrelation, we aggregate

bids over weeks (t) per hour (h). Instances where a generator’s quantity bid falls below

temperatures, precipitation, and wind, not only at the tropics. El Niño occurs when the central and
eastern equatorial Pacific sea surface temperatures are substantially warmer than usual; la Niña occurs
when they are cooler. These events typically persist for 9-12 months, though occasionally lasting a few
years, as indicated by the large gray bar toward the end of the sample in Panel (b) of Figure 2.
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the 5th percentile of the distribution of quantity bids placed by generators of the same

technology are excluded to mitigate contamination from unobserved maintenance periods

within a week. Importantly, this truncation does not qualitatively impact the results.

The definition of the variables {adverseij,t+l}l and {favorableij,t+l}l varies across anal-
ysis. Specifically, when focusing on the supply of hydropower, these variables take the

value one if dam j of firm i anticipates its l-month ahead forecast to deviate by either a

standard deviation higher or lower than its long-run average (for the period 2008-2016),

and zero otherwise, respectively. Conversely, when transitioning the analysis to sibling

thermal generators – those owned by a firm with dams – these indicators are based on

the cumulative l-month ahead inflow forecasts associated with the dams owned by i.

We control for changes in market conditions in xij,t−1,h utilizing average market de-

mand, water stocks, and forward contract positions (in log) for week t−1 and hour h. To

account for seasonal variations that may impact generators differently, fixed effects are in-

cluded at the generator-by-month and firm-by-year levels (µj,m(t)). Macro unobservables,

such as variations in demand, are captured through fixed effects at the week-by-year (τt)

and hour levels (τh). The standard errors are clustered by generator, month, and year.16

Exclusion restriction. Identification in (1) relies on the credible assumption that a

firm’s current bidding does not directly depend on past temperatures and rains at the

dams but only indirectly through water inflows. This restriction is credible because a

generator should only care for its water availability rather than the weather per se –

due to their rural locations, the local weather at the dam is unlikely to influence other

variables of interest to a generator, like energy demand in Colombia, which is controlled

for in the estimation. Appendix C is dedicated to robustness checks and also proposes

an alternative estimation strategy where generators respond symmetrically to favorable

and adverse forecasts. The Appendix also discusses the information content of our inflow

forecasts by showing that generators’ responses to forecast errors – the observed inflow

minus the forecasted inflow – are insignificant.

3.2 Results

3.2.1 Hydropower Generators

Figure 4 displays the coefficients, {βlow
l ,βhigh

l }l, from (1). The dependent variable is the

logarithm of hydropower generator j’s price bid in Panel (a) and quantity bid in Panel

(b). Coefficient magnitudes represent percentage changes when facing an adverse forecast

16Spatial clustering the standard errors is an alternative approach. However, hydrology literature sug-
gests that a riverbed acts as a ”fixed point” for all neighboring water flows, making shocks at neighboring
dams independent (Lloyd, 1963). Moreover, spatial distance has no meaning for thermal generators.
Hence, we do not pursue spatial clustering in this analysis.
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(red circles) or a favorable forecast (blue triangles) one, three, or five months ahead.17

Dams strategically adjust their supply schedules in anticipation of extreme events.

They adapt their supplies mainly by changing their quantity bids rather than their price

bids because, having low marginal costs, they always produce and the market asks for

hourly quantity bids but only daily price bids. We find that dams decrease their supply

schedules ahead of adverse events, recognizing the negative impact of capacity constraints

(e.g., Balat et al., 2015), and increase them ahead of favorable forecasts. Notably, gener-

ators are more responsive to adverse events: generation decreases by 7.1% for one-month

adverse forecasts and 1.3% for two-month adverse forecasts, whereas it only increases by

approximately 3.7% one month ahead of a favorable forecast.18

3.2.2 “Sibling” Thermal Generators

Figure 5 presents the estimation results of (1) on thermal generators that are sibling to

dams. Due to the absence of water stocks for thermal generators, we include a control

for a firm’s lagged total water stock in xij,t−1. The results unveil distinct responses of

sibling thermal generators to forecast inflows compared to hydropower generators. Sibling

thermal generators increase their supply schedule before favorable events (blue triangles)

and decrease it before adverse ones (red circles). They primarily adjust through their

price bids because, given their high marginal costs, they are not operational at all times

and lack the flexibly to vary production across hourly markets. Finally, although the

analysis indicates that they respond to extreme events well before hydropower generators,

it is worth noting that this analysis focuses on extreme firm-level forecasts rather than

generator-level forecasts as in the previous section, which might be less severe.19

3.2.3 Competitors’ Inflow Forecasts

To comprehensively understand firms’ responses to future shocks, we explore whether

hydropower generators incorporate reactions to competitors’ forecasts. We model adverse

and favorable inflows in (1) based on the sum of inflows at a firm’s competitors. We allow

for distinct slopes for each generator’s water stock to control adequately for current water

availability at various dams in xij,t−1. Figure 6 reveals minimal movement in a firm’s bid

concerning its competitors’ forecasts, with magnitude changes generally within ±1% and

lacking statistical significance. Separate joint significance tests for adverse and favorable

forecasts do not reject the null hypothesis that they are zero at standard levels.20

17The chosen timing accounts for the limited correlation across monthly inflow forecasts, with a cor-
relation of 0.2 between forecasts two months apart and 0 for forecasts further apart.

18The results are consistent to to different forecast horizons (Appendix Figure C4) and to running (1)
separately for each monthly forecast so to break any possible correlation across months (Figure C5).

19Appendix Figure C6 shows that generators respond already two months ahead of adverse forecasts.
20Appendix Figure C7 confirms similar results on a shorter forecast horizon (one to three months).

12



Figure 4: Hydropower generators’ responses to inflow forecasts
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Notes: The figure studies how hydropower generators respond to favorable or adverse future water
forecasts according to (1). Each plot reports estimates of {βlow

l } in red and {βhigh
l } in blue for one,

three, and five months ahead. Error bars (boxes) report the 95% (90%) CI.

Figure 5: Thermal generators responses to sibling hydro generators’ inflow forecasts
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Notes: The figure studies how sibling thermal generators respond to favorable or adverse future water
forecasts according to (1). Each plot reports estimates of {βlow

l } in red and {βhigh
l } in blue for one,

three, and five months ahead. Error bars (boxes) report the 95% (90%) CI.

Appendix C.1.3 further extends this analysis in two dimensions. First, it demonstrates

that generators respond to their own inflow forecasts but not to the inflow forecasts of

competitors. Second, despite the potential informativeness of competitors’ water stocks, it

offers suggestive evidence against this hypothesis. Consequently, generators do not appear

to react substantially to the crucial potential state variables of their competitors. This

observation, while potentially counterintuitive in a competitive context, finds parallels

in industrial organization literature. For instance, Hortaçsu et al. (2021) show that

13



Figure 6: Responses to competitors’ inflow forecasts
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Notes: The figure studies how generators respond to favorable or adverse future water forecasts accruing
to competitors according to (1). Each plot reports estimates of {βlow

l } in red and {βhigh
l } in blue for

one, three, and five months ahead. Error bars (boxes) report the 95% (90%) CI.

airline carriers employ simple heuristics in pricing, disregarding the pricing of other airline

companies. Similar to hydropower generators, airline firms grapple with forecasting seat

demand (inflows) across various routes (dams). In both scenarios, focusing on their own

state variable while overlooking those of competitors may simplify a complex problem.

3.3 Implications for Market Prices

Firms strategically deploy their thermal technology differently during periods of abun-

dance (high inflows) and scarcity (low inflow). To assess whether a greater unshocked

capacity (i.e., thermal) can alleviate the price hike resulting from dry spells, we capitalize

on the exogenous occurrence of such periods across firms with different thermal capacity.

We base our analysis on the following regression model,

ln(pth) =
L∑
l=1

[
γlowl

∑
i

(
adversei,t+lK

T
it

)
+ γhighl

∑
i

(
favorablei,t+lK

T
it

)]
+

L∑
l=1

[
βlow
l

∑
i

adversei,t+l + βhigh
l

∑
i

favorablei,t+l

]
+ γcap

∑
i

KT
it + xt−1,hα + τth + ϵt,

(2)

where the logarithm of the hourly average weekly price is on the left-hand side. On the

right-hand side, the first line of (2) features the interaction between whether a firm ex-

pects adverse or favorable inflow forecasts l-months ahead with its total sibling thermal

capacity in GWh, KT
it . We expect that the greater thermal capacity available to gener-
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ators with adverse forecasts, the lower the price (γlowl < 0), and vice-versa for favorable

inflows (γhighl > 0) if thermal generators do not operate in similar periods (cf. Figure

5). The remaining two lines of (2) control for the direct effect of adverse and favorable

forecasts and total thermal capacity on spot prices. Finally, xt−1,h includes lagged market

outcomes, such as hourly average weekly demand and forward contracts, in logs. As error

terms are likely correlated across seasons and hourly markets, we cluster the standard

errors at the month and year level.

Table 1: The impact of technology substitution on spot prices

(1) (2) (3) (4)
Average weekly price in hour h (ln pht)

Adverse inflows (3 months), γlow3 0.166 0.210∗∗ 0.334∗∗

(0.284) (0.058) (0.077)
Adverse inflows (5 months), γlow5 0.413∗∗ -0.127 -0.241

(0.126) (0.094) (0.117)
Thermal cap. available to adv. inflows (3 months), βlow

3 -1.303 -1.746∗∗ -2.769∗∗

(2.539) (0.540) (0.747)
Thermal cap. available to adv. inflows (5 months), βlow

5 -3.508∗∗∗ 0.875 1.979
(0.492) (0.721) (0.944)

Favorable inflows (3 months), γhigh3 0.032 0.021 -0.162∗∗

(0.203) (0.037) (0.044)

Favorable inflows (5 months), γhigh5 0.374 0.001 -0.368∗

(0.195) (0.083) (0.154)

Thermal cap. available to fav. inflows (3 months), βhigh
3 -0.038 -0.045 1.380∗∗

(1.654) (0.249) (0.348)

Thermal cap. available to fav. inflows (5 months), βhigh
5 -2.939 0.064 3.133∗

(1.722) (0.741) (1.322)
Total sibling thermal capacity (GW), γcap -0.012∗∗ -0.007∗∗∗ -0.005∗∗∗ -0.020∗∗∗

(0.003) (0.001) (0.001) (0.003)
Lag demand (ln) ✓ ✓ ✓
Lag contract position (ln) ✓ ✓ ✓
Lag water stock (ln) ✓
Lag spot price (ln) ✓
FE: Hour ✓ ✓ ✓ ✓
FE: Year-by-season ✓
FE: Year-by-month ✓ ✓ ✓

Subset All All Dry season Wet season
N 7,464 7,464 2,424 5,040
R2 Adj. 0.639 0.934 0.920 0.915

* – p < 0.1; ** – p < 0.05; ∗∗∗ – p < 0.01

Notes: This table shows the estimated coefficients from (2). The main regressors are the number of
adverse (rows 1 and 2) and favorable inflows (rows 5 and 6) and their interactions with the thermal
capacity available to the firms that expect an adverse (rows 3 and 4) and a favorable inflow (rows 7 and
8). All variables are standardized. Column 1 includes fixed effects by year-by-season, while the remaining
columns have fixed effects by year-by-month. Column 3 examines adverse inflow in dry seasons (from
December to March) and Column 4 examines favorable inflows in wet seasons (from April to November).
Standard errors clustered by year and month.

Table 1 presents the results, where we focus on forecasts three and five months ahead

to avoid the correlation between the current total water stocks and the one- and two-

month ahead forecasts. Column (1) controls for current market conditions using lag
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demand and forward contract position, as well as hydropower availability using total

water stock. Fixed effects are at the hour and at the year-by-season (dry or rainy) level.

Column (2) utilizes lag spot prices to control for market conditions and month-by-year

fixed effects to account for hydropower availability. All regressors, including those that

are a function of multiple variables, are standardized.

The estimates in Column (1) indicate that a one standard deviation increase in the

number of adverse inflows expected three to five months ahead increases current prices.

However, a concurrent one-standard-deviation increase in the sibling thermal capacity

available partially compensates for these higher prices. Column (2) produces qualitatively

similar findings, with the primary difference being that the largest effect appears three

months ahead instead of five. This result can be attributed to the different controls, as

including the lagged water stock in Column (1) captures some variation pertaining to

three-month forecasts, as it correlates more strongly with the three-month forecasts than

the five-month ones.

The results are less clear for favorable inflows, likely stemming from a correlation

across forecasts. To gain deeper insights into the impact of favorable inflows on market

prices, we refine our analysis by subsetting the sample in Columns (3) and (4). Specifi-

cally, we focus on adverse forecasts during dry seasons and favorable forecasts during wet

seasons to further highlight the capacity constraint mechanism. The analysis confirms

the previous results during droughts (Column 3). However, the opposite holds during

wet seasons (Column 4). Here, prices are, on average, lower ahead of favorable inflows

as dams expand their supplies. At the same time, thermal generators decrease their own

supplies according to the mechanism outlined in Section 3.2.2. Therefore, more ther-

mal capacity at firms expecting abundance increases market prices as these firms “take

capacity out of the market” by decreasing their thermal supplies.

These findings hold significant implications for policy. The concentration of thermal

capacity around firms expecting droughts may potentially decrease market prices, while

conversely, it could raise prices during periods of expected abundance of renewables. To

fully understand this result, the following sections introduce an oligopoly model to exam-

ine how diversified firms wield their market power under diverse capacity configurations.

Then, we extend and estimate the model using data from the Colombian wholesale energy

market, conducting counterfactual exercises to quantify the price benefits resulting from

moving thermal capacity to renewable suppliers.

4 A Competition Model With Diversified Firms

This section introduces an oligopoly model that reproduces the key empirical findings

from the preceding section. Firms exhibit diversified production, enabling each to pro-

duce the same homogeneous good by means of technologies with differing marginal costs
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and capacities. In this context, market dominance hinges on either a firm’s larger overall

capacity or the superior efficiency of one of its technologies. When a firm dominates in

capacities, it acts as a monopolist on the market unsatisfied by its competitors. Con-

versely, having the most efficient technology helps a firm “crowd out” its competitors by

selling below their marginal cost. We find that the opposing impacts of these two sources

of market power on market outcomes produce the empirical patterns in Section 3.2.

The firm’s problem. Consider an oligopolistic market where firms sell a homogeneous

good, such as electricity, and face an inelastic market demand, D(ϵ), subject to an exoge-

nous shock ϵ shifting demand horizontally, with a strictly positive density in [ϵ, ϵ]. Before

ϵ is realized, firm i commits to a supply schedule, Si(p), which maximizes

max
Si(·)

Eϵ

[
πi

]
= Eϵ

[
p · Si(p)− Ci (Si(p))

]
, s.t. Si(p) = D(ϵ)−

∑
j ̸=i

Sj(p), (3)

where C(·) is firm i’s cost of producing Si(p
∗) at the market price, p∗. The market

clearing constraint forces firm i’s supply to equate its residual demand, DR
i (p

∗, ϵ) ≡
D(ϵ)−

∑
j ̸=i Sj(p

∗), which is the demand not satisfied by i’s competitors at p∗.

We adopt the supply function equilibrium (SFE) concept proposed in the seminal

work of Klemperer and Meyer (1989), in which firm i selects Si(p) by best-responding

to the supply of its competitors, S−i(p), to maximize (3). SFEs come with two key

advantages. First, we need no assumption on firm’s beliefs about the random demand

shock ϵ: Klemperer and Meyer (1989) demonstrate that maximizing (3) with respect to

a function, Si(p), is equivalent to choosing the optimal price p for every possible demand

realizations D(ϵ̂), or maxp πi(p, ϵ̂) = p ·DR
i (p, ϵ̂)− Ci(D

R
i (p, ϵ̂)). By varying ϵ̂, we obtain

all possible realizations of DR
i (p, ϵ̂) in which firm i best responds to all its competitors:

these quantity-price combinations, (DR
i

(
p(ϵ̂), ϵ̂

)
, p(ϵ̂)), depict the Si(p) that solves (3).

Second, this ex-post optimality property does not apply to other standard models

of competition like Bertrand and Cournot under demand uncertainty and increasing

marginal costs. This property makes SFEs a natural equilibrium concept to examine

the behavior of a firm whose technologies have different marginal costs and capacities.

In addition, by allowing any non-negative supply slope, SFEs include these competition

models as limiting cases: a horizontal schedule (a price for all quantities) aligns with

Bertrand, while a vertical schedule (a quantity for all prices) aligns with Cournot.

Baseline (non-diversified firms). There are three production technologies: a low-, a

high-, and a fringe-cost technology, with constant unit costs cl, ch, and cf , respectively,

with cl < ch < cf , non-negative, and finite. Firm i’s technology portfolio Ki is a vector de-

tailing its capacity of low-, high- and fringe-cost technologies, namely, Ki = (K l
i , K

h
i , K

f
i ).

Hence, Ci =
∑

τ c
τ · Sτ

i (p) depends on its technology-specific supply, Sτ
i (p), at price p.

There are N > 1 firms, with none of the firms being diversified in this baseline

17



scenario. The technology portfolios of the strategic firms are K1 = (K l
1, 0, 0) for Firm 1

and K2 = (0, Kh
2 , 0) for Firm 2. Firm 1 can be viewed as a supplier of cheap renewable

energy, such as a dam, and Firm 2 as a fossil-based generator. Given the size of dams

in the empirical application, we assume that K l
1 > Kh

2 > 0, making Firm 1 the market

leader. The technology portfolio of fringe firm i ∈ (3, ..., N) is Ki = (0, 0, Kf
i ) and

includes only the fringe technology: since Kf
i is small, these firms are price takers.21

The equilibrium supply for strategic firm i ∈ (1, 2) depends on the market price.

either firm produces for p < ch, as Firm 2, whose marginal cost is ch, would make a loss

in this price range, while Firm 1 can unilaterally inflate p to (an ε > 0 below) ch by

not producing for any p ∈ [cl, ch) as in Bertran competition. For p ∈ [ch, cf ), firm i’s

first-order condition (FOC) is:

Si(p) = S ′
−i(p) · (p− cτi ), for i ∈ (1, 2). (4)

Hence, in this price range, Si(p) depends on the slope of its competitors’ supply, S ′
−i(p),

and the unit cost of the marginal technology that firm i uses in production τ ∈ (l, h),

resulting in different slopes given a different market price and marginal technology. At

p = cf , firm i exhausts all its capacity to prevent being crowded out by the fringe firms

(i.e., Si(c
f ) =

∑
j K

j
i ). Si(p) are continuous for any p as a discontinuous supply provides

opponents with a profitable deviation by increasing production at a slightly lower price.

Before presenting a formal proposition, we numerically illustrate the equilibrium out-

comes in this market in the left panels of Figure 7 and use them to visually compare the

impact of diversification, which we illustrate in the right panels. The red (blue) dotted

lines report the assumed cost structures of Firm 1 (Firm 2). Under abundance (Panel

a), Firm 1’s low-cost capacity is K l
1 = 9 but only K l

1 = 5 under scarcity (Panel c). The

other primitives are constant across scenarios at cl = 0, ch = 1, cf = 2, and Kh
2 = 4.

Solid lines report equilibrium outcomes from the point of view of Firm 1. The solid red

line is Firm 1’s supply, S1(p), and its residual demand, DR
1 (p), is in black. Without loss

of generality, we fix the realized market demand at 6 (vertical gray line).

The shape of S1 follows (4) and, hence, is quite similar across panels. As mentioned

above, S1(p) = 0 for p < ch. At the price level p = ch, Firm 1 undercuts its opponent

thanks to the greater efficiency of its low-cost technology, similar to the equilibrium that

we would observe under Bertrand competition with asymmetric firms. Unlike Bertrand,

Firm 1 does not employ all its capacity at this price because firms have incentives to

reduce their production, similar to a Cournot game. For every p ∈ [ch, cf ), the FOC in

(4) entails comparing the profits from pricing the marginal unit at p against the alternative

case of selling at p′ > p, thereby losing the marginal unit to competitors while raising

21Fringe firms ensure that the two strategic firms face decreasing residual demands. A price ceiling
can replace this assumption as in Fabra and Llobet (2023), or we could assume that the market demand
D(p, ϵ) decreases in p as in the original work of Klemperer and Meyer (1989).

18



higher revenues from the inframarginal ones. Hence, the slope of S1 becomes positive at

large enough quantities and similarly for Firm 2. This tradeoff disappears at p = cf , the

price at which fringe firms flood the market, so that Si(c
f ) becomes vertical at capacity.

S2 has a similar shape to S1. S2 can be found as the horizontal difference between

the gray (D) and the black (DR) lines, with part of DR’s horizontal segment at p = cf

shared with the fringe firms, as Firm 2 can price its last units slightly below cf to avoid

being crowded out. To avoid cluttering Figure 7, we plot S2 in Appendix Figure A1.

Since, in equilibrium, at least one of the two firms must exhaust all its capacity,22 a

key difference arises across the two panels. In Panel (a), Firm 2 exhausts all its capacity

as p → cf , while S1(c
f ) is horizontal meaning that Firm 1 is willing to sell multiple

units at p = cf . This outcome is reversed under scarcity in Panel (c). Here, Firm 2 has

a greater ability to unilaterally raise prices for greater demand realizations since Firm

1’s capacity is smaller. As both firms supply less compared to Panel (a), Firm 1 exactly

exhausts its capacity as p→ cf , while Firm 2 has idle capacity at this price. Scarcity does

not prevent Firm 1 from crowding out Firm 2 for low-demand realizations; however, the

horizontal segment of S1 is now shorter compared to that in Panel (a) as Firm 1 rumps

up production earlier to exhaust capacity at p → cf . Equilibrium prices are higher in

Panel (c) than in Panel (a), echoing the results in Table 1, which shows that adverse

inflows and lower capacities are associated with higher prices.

Equilibrium with diversified firms. To replicate the analysis in Table 1, where we

studied market price changes when the firm experiencing a drought (lowK l
1) or abundance

(high K l
1) had more or less thermal capacity (Kh

1 = 0 or Kh
1 = δ > 0), we diversify Firm

1 by considering a reallocation of δ = 0.5 units of high-cost technology from Firm 2 to

Firm 1. As a result, the technology portfolios in Panels (b) and (d) of Figure 7 change

to K̃1 = (K l
1, δ, 0) and K̃2 = (0, Kh

2 − δ, 0), where we overlaid and shaded the original S1

and DR
1 to compare the market outcome with the relevant baseline scenario.

We find that diversifying Firm 1 has opposite effects on market prices in the two

scenarios. First, notice that the new marginal cost curves, C̃1 and C̃2, denote a greater

capacity concentration around Firm 1 in Panels (b) and (d) compared to Panels (a) and

(c), respectively. Panel (b) presents the standard effects of concentration in oligopolistic

markets: as Firm 1 prioritizes its low-cost capacity to its new high-cost one – the so-

called, merit order – it employs its high-cost capacity only at p = cf . Before the transfer,

this capacity was sold by Firm 2 for p < cf . Both firms react by decreasing their

supply schedules, leading to higher prices, consistent with the role of greater thermal

concentration during wet periods, as in Column 4 of Table 1.

In contrast, a similar technology transfer decreases prices under scarcity. In Panel

(d), Firm 1 has more capacity than in Panel (c), but it still exhausts its overall capacity

22If not, undercutting one’s rival by producing more at lower prices is the optimal strategy.
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Figure 7: Equilibrium before and after diversifying Firm 1
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(b) After the transfer
K̃1 = (9, 0.5, 0) & K̃2 = (0, 3.5, 0)

Bottom panel: Scarcity of low-cost technology
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(d) After the transfer
K̃1 = (5, 0.5, 0) & K̃2 = (0, 3.5, 0)

Notes: Each panel illustrates equilibrium outcomes from the perspective of Firm 1. Solid lines represent

equilibrium outcomes, while dotted lines depict marginal cost curves for Firm 1 (red) and Firm 2 (blue).

In each panel, the left plot shows outcomes before a capacity transfer, and the right plot shows outcomes

after transferring 0.5 units of high-cost capacity from Firm 2 to Firm 1. The shaded square (Eq) and

curves in the right plot represent the pre-transfer equilibrium, and symbols with a ∼ denote post-transfer

equilibrium variables. Each subcaption details the technology profile of each firm as Ki = (Kl
i ,K

h
i ,K

f
i ).

Market demand is constant at 6 (gray solid line), and the cost parameters are cl = 0, ch = 1, and cf = 2.

(K l
1 + δ) at p = cf in equilibrium because δ is small relative to the size of Firm 2 – note

that its supply was flat for 1.5 units at p = cf in Panel (c), which effectively are not

produced in that equilibrium (Appendix Figure A1). In Panel (d), the transfer enables

the firm to employ more of its low-cost technology to outcompete its rivals more than in

Panel (c), even though its low-cost capacity K l
1 stays unchanged, because it alters Firm

1’s trade-off between marginal and inframarginal units at all p ∈ [ch, cf ), with the new

δ high-cost units utilized for p approaching cf . Therefore, after the transfer, Firm 1’s

hydropower supply is still steeper under scarcity than under abundance (Panel b), but it

expands in Panel (d) compared to Panel (c). On the other hand, comparing Panels (b)
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and (d), Firm 1’s high-cost capacity is priced at a higher price under abundance than

scarcity, which matches the empirical evidence from Panel (a) of Figure 5.

Turning to Firm 2’s best response, the gap between D̃R
1 and the shaded pre-transfer

DR
1 whitness Firm 2’s new agressive pricing strategy, as its supply expands for all p ∈

[ch, cf ) to limit its revenue loss due to Firm 1’s more aggressive pricing.23 This response is

easily detected for prices above the price at which Firm 1 exhausts its K l
1 units (p > 1.6).

As Firm 2 priced the transferred δ units exactly at cf before the transfer, but Firm 1 sells

them for p ≤ cf after it, equilibrium prices decrease compared to Panel (c). This result

mirrors the finding in Table 1 that increased thermal capacity among firms anticipating

droughts helps temper price surges. It is worth noting that across all panels, Firm 1

exclusively utilizes its low-cost technology at the equilibrium p, highlighting the absence

of economies of scale because the average cost stays unchanged.

The following proposition generalizes these numerical examples.

Proposition 1 A marginal capacity transfer from Firm 2 to Firm 1 increases the equi-

librium price if K l
1 >

cf−cl

cf−ch
Kh

2 (abundance scenario) and decreases it if K l
1 <

cf−cl

cf−ch
Kh

2

(scarcity scenario).

Proof. See Appendices A.1.1 – A.2.3. □

The proposition demonstrates that the lower (higher) prices observed when the firm

experiencing relative scarcity (abundance) has more high-cost thermal capacity, as de-

picted in Table 1, are attributable to strategic competition. In addition, the proposition

clarifies the exact meaning of scarcity and abundance, as Firm 1’s relative capacity com-

pared to Firm 2, taking into account its cost advantage through the ratio cf−cl

cf−ch
. In

Appendix A.1.1, we show that this equilibrium exists and is unique.

Therefore, diversification can incentivize a more efficient usage of the low-cost tech-

nology. If firms had the same technologies, moving capacity from a small to a large firm

would always result in higher prices, as it severs Bertrand forces, making one’s capacity

the sole source of market power. Similarly, if both Firms 1 and 2 were diversified with

the same capacity profile (K l, Kh, 0) with K l > 0 and Kh > 0, moving high-cost capacity

from Firm 2 to 1 raises market prices as Firm 2 becomes less competitive at high prices

due to Firm 1’s larger high-cost capacity (the proof is in Appendix A.1.3).

Concentration & market power. Our analysis underscores a novel U-shaped rela-

tionship between concentration and market prices when efficiency dominates. To see it,

focus on the scarcity scenario and imagine that all the capacity of Firm 2 is transferred

to Firm 1 instead of just δ = 0.5 units, making S2(p) = 0∀p. Due to such a dominant

capacity position, Firm 1 will best respond by selling all its capacity at cf , meaning a

higher equilibrium price than in Panel (d).

23At this level, Firm 1’s supply flattens slightly according to (4) because the following marginal units
cost the firm ch instead of cl.
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Therefore, if firms are diversified, a small δ-reallocation to the most efficient firm

pushes the price down as the receiving firm expands its supply to crowd out its competitors

– i.e., Bertrand forces. Further increases in δ lead to smaller marginal drops in prices,

as the greater capacity provides the firm with the standard monopolistic incentives to

exclude consumers by raising prices – i.e., Cournot forces. Prices will first drop, reach

a plateau, and then increase as shares of capacities are transferred. When capacity

dominates instead, any capacity transfers of less efficient technologies to the dominant

firm can only raise prices due to the merit order.

General framework. Extending the game presented in the previous section to N

strategic players and a downward-sloping market demand, Appendix A.1 finds that when

the market clears and uncertainty resolves,

p− ci(Si(p))

p︸ ︷︷ ︸
Markup

=
si
η︸︷︷︸

i’s share of
price elasticity

×
(
1− S ′

i(p)

DR
i
′
(p)

)
︸ ︷︷ ︸
Crowd out ratio

(≥1)

. (5)

As in Cournot, the left-hand side portrays firm i’s markup. Unlike Cournot, the right-

hand side features not only the price elasticity of demand faced by firm i but also the

ratio of the slopes of firm i’s supply and residual demand at price p, which we term

“crowd out.” The ratio in parenthesis is non-negative: if greater than one, i gains market

shares from its rivals and loses to them when smaller than one, as p changes marginally.

The equilibrium supply balances a firm’s efficiency, as measured by the merit order of i’s

production technologies, ci(Si(p)), with a firm’s capacity dominance, which relates the

firm’s technology portfolio to that of its competitors through S ′
i(p) and D

R
i
′
(p).

To gain intuition, imagine either plot in Figure 7 as a grid where prices and quantities

are discretized: if at a given price increase p+ h competitors increase their supply more

than i, then i loses quotes of the market as Si(p + h) − Si(p) < DR
i (p) − DR

i (p + h).

In standard oligopoly games, firms only internalize that increasing production decreases

prices through the price elasticity, (si/η),
24 but do not internalize the strategic response

of their competitors through the slope of their supplies (DR
i
′
(p) = D′(p) − S ′

−i(p)). As

a result, firms’ equilibrium schedules in (5) are strategic complements, as we prove in

Proposition A.1 in Appendix A.1 and as illustrated from the best-responses in Figure 7.

In the remainder of the paper, we use the insights developed in this section to quantify

the benefits of diversification in the Colombian wholesale energy market.

24Since demand is vertical, the demand elasticity to prices, η, is not defined in our model. Hence, in an
abuse of notation, si/η in (5) is firm i’s share of the demand elasticity of market prices, (−∂ ln p/∂ lnD) ·
Si/D with market demand D, which is analogous to the demand elasticity of prices si/η faced by a firm
in the Cournot and in the homogeneous-good Bertrand models.
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5 Quantitative Model

This section extends our framework to account for the main institutional and competitive

aspects of the Colombian energy market, namely, the structure of the spot market and

responses to the expectation of future water availability. The latter will provide exogenous

variation in a firm’s low-cost capacity, which we use to quantify the efficiency and capacity

forces introduced in Section 4.

Generation. Each firm i is equipped with Ji ≥ 1 generators indexed by j. For simplicity,

as illustrated in Figure 2, we focus on two technologies: hydro, characterized by a marginal

cost cH , and thermal, with a marginal cost cT . LetHi (Ti) represent the set of hydropower

(thermal) generators owned by firm i. If both sets Hi and Ti are not empty, then firm i

is diversified with technology portfolio Ki = (KH
i , K

T
i ). This analytical framework can

be extended seamlessly to incorporate additional technologies.

Institutions. In the spot market at time t, each generator j from firm i submits a

price bid, bijt, along with hourly quantity bids, {qijht}23j=0. As in the previous section, the

hourly demand, denoted as Dht(ϵht), is vertical and is only known to firms up to a noise

parameter, ϵht with zero-mean and full support. The system operator crosses the supply

schedules submitted by each firm, Siht(pht) =
∑Ji

j=1 1[bijt≤pht]qijht, against the realized

demand Dht(ϵ̂) to ascertain the lowest price, pht(ϵ̂), such that demand equals supply:

Dht =
N∑
i=1

Siht(pht), for all h = {0, ..., 23} and t. (6)

Thus, firm i’s profits in hour h of day t hinge on ϵht and pht and can be expressed as:

πiht(ϵht) = DR
iht(pht, ϵht) · pht − Ciht︸ ︷︷ ︸

Spot market

+(PCiht − pht) ·QCiht︸ ︷︷ ︸
Forward market

+1[pht>pt](pt − pht) · qijt︸ ︷︷ ︸
Reliability charge

. (7)

Here, the first term is i’s spot market profits similar to that in (3). Additionally, firm

i’s profits are influenced by its forward contract position, resulting in an economic loss

(profits) if it sells QCiht MWh at PCiht below (above) pht. The reliability charge mech-

anism, known as cargo por confiabilidad, mandates generators to produce qijt whenever

the spot price exceeds a scarcity price, pt, also contributes to firm i’s overall profits.25

Law of motion of water. Hydropower capacity depends on water inflows, and firms

take it into account in their pricing decisions, as shown in Section 3.2. Drawing from

the hydrology literature (e.g., Lloyd, 1963, Garcia et al., 2001), a generator’s water stock

depends on the past water stock, the water inflow net of evaporation and other outflows,

25Scarcity prices are updated monthly and computed as a heat rate times a gas/fuel index plus other
variable costs (Cramton and Stoft, 2007), with scarcity quantities, qijt, determined through yearly auc-
tions (Cramton et al., 2013).
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and the water used in production. At the firm level, the law of motion of a firm’s overall

water stock can be summarised through the following “water balance equation” as,

wit+1 = wit −
23∑
h=0

SH
iht(pht)︸ ︷︷ ︸

Water used in production

+
∑
j∈Hi

δijt︸ ︷︷ ︸
Water inflows

, (8)

where wit (∈ [wi, wi] ≡ Wi) denotes the observed water stock of firm i in period t in

MWh, SH
iht(pht) =

∑
j∈Hi

1[bijt≤pht] qijht is hydropower supplied by firm i’s generators at

the market price in each market hour, and δijt is the water inflow of generator j in day t.

The law of motion in (8) is at the firm level for various reasons. First, our findings

indicate that the generators of the same technology that a firm owns respond to forecasts

accruing to the whole firm, suggesting that the locus of control is the firm itself. Sec-

ond, dams belonging to the same firm tend to be on nearby rivers (Figure 8), meaning

dependence on the water inflow of dams owned by the same firm. In contrast, the inflow

correlation across firms’ water stocks – after accounting for seasons and lagged inflows –

is less than 0.2. Such a low correlation depends on riverbeds acting as “fixed points” for

the perturbation in an area: given the spatial distribution of dam ownership in Colombia,

local rainfalls accrue to just one firm, reducing the correlation across firms.

Figure 8: Dam locations

Notes: The location of Colombia dams by firm (color) and capacity (size). Colombia’s West border is
with the Pacific Ocean while rivers streaming East continue through Brazil and Venezuela. To give a
sense of the extension of Colombia, its size is approximately that of Texas and New Mexico combined.

Strategic firms. We consider all firms with at least a dam as strategic. For these

firms, the actual value of holding water results in a trade-off between current and future

production. To the extent that firms take into account future inflows, a firm will choose

24



a supply schedule to maximize the sum of its current and future profits according to

Πit = Eϵ

[
∞∑
l=t

βl−t

23∑
h=0

πihl(ϵhι)

]
,

where the expectation is taken over the market demand uncertainty, ϵht, and β ∈ (0, 1)

is the discount factor. Using a recursive formulation, a firm’s objective function becomes

V (wt) = Eϵ

[
23∑
h=0

πiht + β

∫
W
V (u) f

(
u
∣∣Ωt

)
du

]
, (9)

where vectors are in bold font. The state variable is the vector of water stocks, wt with

domain W ≡ {Wi}Ni , and transition matrix f(·|Ωt) following (8). The inputs in Ωt are

the water stocks, the realized hydropower productions, and the water inflows on day t.

Competitive fringe. As in Section 4, the supply schedules of fringe firms is zero for

prices below their marginal cost. They supply all their capacity for higher prices.

5.1 Market Power and Market Prices with Diversified Firms

In this section, we derive the optimal quantity bid submitted by generator j of firm i. Our

focus on quantity bids is grounded on the fact that generators submit hourly quantity

bids but only daily price bids, providing greater flexibility in selecting quantities than

price bids. We then study how market power affects pricing with differentiated firms.

Generators’ supply schedules are characterized by step functions, which makes them

not differentiable (Kastl, 2011). To study the FOCs from (9), we smooth supply sched-

ules for each firm following Wolak (2007) and Reguant (2014) (see Appendix E for the

smoothing procedure). We analyze the change in discounted profits for firm i resulting

from a marginal change in generator j’s quantity bid, qijht, where j is either a hydro

(τij = H) or thermal (τij = T ) generator. Omitting the expectation with respect to ϵ

and the firm and generator indices (ij) of technology τij for clarity, the FOCs are:

∂V (wt)

∂qijht
= 0 :

(
pht

∂DR
iht

∂pht
+DR

iht

)
∂pht
∂qijht

− ∂pht
∂qijht

(
QCijht + 1{pht>p}qijt

)
︸ ︷︷ ︸

Marginal revenue

−
∑

τ∈{H,T}

(
∂Sτ

iht

∂qijht
+
∂Sτ

iht

∂pht

∂pht
∂qijht

)
cτit︸ ︷︷ ︸

Marginal cost

(10)

+

(
∂SH

iht

∂qijht
+
∂SH

iht

∂pht

∂pht
∂qijht

)∫
W
β V (u)

∂f(u|Ωt)

∂SH
iht

du︸ ︷︷ ︸
Marginal value of holding water
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+
N∑
k ̸=i

∂SH
kht

∂pht

∂pht
∂qijht

∫
W
β V (u)

∂f(u|Ωt)

∂SH
kht

du︸ ︷︷ ︸
Marginal value from competitor k’s holding water

= 0.

The derivative of firm i’s current revenues from (7) with respect to qijht is in the first line

of (10). The first term in parenthesis is the marginal revenue in the spot market. Market

power lowers marginal revenues below market prices, pht, if
∂pht
∂qijht

< 0. Conversely, if

the firm is a price taker ( ∂pht
∂qijht

= 0), it is paid precisely pht on its marginal unit. This

capacity channel prompts firm i to reduce qijht for all its technologies when market power

increases, akin to the capacity effect witnessed in Panel (b) of Figure 7, in which market

power resulted from an exogenous capacity transfer. The second term in the same line

addresses how the forward contract position and the reliability payment system influence

bidding in the spot market.

Market power affects equilibrium outcomes also through an efficiency channel. The

actual marginal cost is the sum of its operating marginal costs, {cH , cT}, in line two, and

its intertemporal opportunity cost, in the remaining lines of (10), which endogeneizes

the firm’s capacity constraint through a tradeoff between current and future production.

By allocating more capacity to the current hydro supply, this tradeoff intensifies as it

decreases the firm’s future water stock and profits. Hence, the integral in line three of

(10) is non-positive. Since cτ is constant over time, this intertemporal opportunity cost

contracts or expands i’s cost curve for different realizations of Ωt setting the firm under

scarcity when ∂f(u|Ωt)

∂SH
iht

< 0, or abundance when ∂f(u|Ωt)

∂SH
iht

= 0.

Generator j adjusts its response to scarcity based on its market power. In the absence

of market power, when ∂pht
∂qijht

= 0, the firm experiences a decrease in its future profits that

its equal to the change in the water stock,
∂SH

iht

∂qijht
> 0, times the expected change in future

profits as in the integral in line three. The introduction of market power, denoted as
∂pht
∂qijht

< 0, counteracts this loss. With market power, the firm recognizes that increasing

qijht marginally decreases pht, resulting in a smaller portion of its hydropower supply being

satisfied in equilibrium as
∂SH

iht

∂pht

∂pht
∂qijht

< 0. Consequently, the two terms in parentheses in

the third line of (11) exert opposing influences on marginal costs during scarcity events,

leading to a net positive effect for hydropower generators, which is consistent with the

drop in supply ahead of droughts in Figure 4. In contrast, thermal generators cannot

directly impact the firm’s hydropower supply (
∂SH

iht

∂qijht
= 0). In this case, the net effect is

negative, prompting a firm to raise its thermal supply ahead of a drought to preserve its

hydropower capacity. This observation is in line with results in Figure 5.

We join these observations regarding the supplies of hydro and thermal generators in

the following proposition,

Proposition 2 If a firm’s revenue function is strictly concave and twice differentiable,
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the marginal benefit of holding water decreases in its thermal capacity Ki, i.e.,
∂2Vi(·)
∂wi∂Ki

< 0.

Proof. See Appendix A.3. □

This proposition reveals that a firm’s hydropower production increases in its thermal

capacity, which squares with the theoretical analysis in the bottom panels of Figure 7. The

availability of high-cost supply eases Firm 1’s resource constraint, leading to increased

hydro production. Intuitively, thermal capacity reduces future water requirements, di-

minishing the value of holding water now. Thus, examining the efficiency channel in

isolation shows that a diversified firm’s output surpasses that of two specialized firms,

each with either thermal or hydro generators.

Finally, notice that the state space includes all firms’ current water stocks, wt: the

last line of (10) considers how a change in a competitor’s hydropower generator impacts

wt and, thus, i’s expected profits through the market clearing (
∂SH

kht

∂pht

∂pht
∂qijht

≤ 0). Because

this channel does not affect firm i’s thermal and hydro generators differently, it does not

shed light on the implications of diversified technologies, on which this paper focuses.

5.1.1 Capacity vs. Efficiency in the Data

Combining the capacity and efficiency channels described above, Figure 9 illustrates the

relationship between market prices (y-axis) and the slope of a firm’s residual demand

(x-axis), which is flat at 0 (indicating the firm is a price taker) and vertical at 1. In

Panel (a), the focus is on scarcity periods where firm i has water stocks below its 30th

percentile, whereas Panel (b) considers water-abundant periods with firm i’s water stock

above its 70th percentile. Each scatter plot represents the average of hour-by-day markets

with similar (x, y) coordinates over 100 points per firm.

Viewing variation in market power as induced by variation in the technology portfolio

of the firms facing scarcity, Panel (a) reveals a U-shaped relationship between prices and

market power similar to that discussed in Section 4. Efficiency dominates when market

power is low, causing an initial drop in market prices as demand becomes more inelastic.

As market power increases, firms opt to reduce production across all technologies, leading

to higher prices due to the marginal revenue effect. In contrast, the U-shape is less

pronounced in Panel (b) of Figure 9, where ∂f(·|Ωt)

∂SihtH
→ 0, reducing the dependence of

future profits on current production. Interestingly, this U-shape relationship is entirely

driven by the crowd out ratio, which we introduced in (5) (Appendix Figure D1).26

5.2 Identification and Estimation

The extensive state space outlined in (10) presents a dimensionality challenge in estimat-

ing the relevant primitives. Existing literature offers two primary strategies to address

26This result is not surprising given that an application of the envelope theorem to (6) finds that
∂DR

iht

∂pht

∂pht

∂qijht
∝ (1− S′

iht/D
R
iht

′
)−1.
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Figure 9: A U-shaped relationship between prices and the slope of the residual demand
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(a) Scarcity periods
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(b) Abundant periods

Notes: The figure presents binned scatter plots of the market prices (y-axis) for different slopes of a firm’s

residual demand (x-axis), computed as
∂DR

iht

∂pht

∂pht

∂qijht
, with 100 bins per firm. Only diversified firms with

dams whose bids are dispatched are considered. The black line fits the data through a spline (the 95%
CI is in gray). Panel (a) focuses on markets where firm i has less than the 30th percentile of its long-run
water stock. Panel (b) focuses on periods where i’s water stock is greater than its 70th percentile.

this issue. The first method involves leveraging terminal actions (Arcidiacono and Miller,

2011, 2019), which eliminates the need to compute the value function during estimation.

This approach is not applicable to our study since no exit occurred in our sample.

Our proposed solution approximates the value function with a low-dimensional func-

tion of the state space, denoted as V (w) ≃
∑R

r=1 γr ·Br(wr), where Br(wr) are appropri-

ately chosen basis functions.27 This approach echoes the work of Sweeting (2013), who

introduced a nested iterative procedure. In his procedure, given an initial policy function

σ detailing the optimal course of action for each generator in a market, the algorithm (i)

simulates forward the static profits πiht in (9) for M > 1 days for each potential initial

value of firm i’s water stock w given a discount factor β, (ii) regresses the discounted

sum of the M daily profits on w to estimate the γr parameters of V (w), and (iii) finally

estimates the cost parameters in (9) given the approximated V (w; γ̂, B). The iterative

process halts when the implied policy from maximizing V (w; γ̂, B), σ′, is sufficiently close

to the previous one. Alas, we cannot simulate forward the contribution of forward mar-

kets to current profits πijht in step (i), as we do not observe the price of forward contracts

in (7), PCiht. Therefore, disregarding PCiht in the regression of discounted profits in step

(ii),
∑M

t=1 β
t
∑

h πijht(w), on water stocks, w, will not identify the γr coefficients, as the

left-hand side is a poor proxy of discounted cumulative profits, V (w).

27Basic polynomials or, as suggested by Bodéré (2023), neural networks can serve as basis function.
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To overcome these problems, we follow Wolak (2007) and Reguant (2014) and base

our analysis on the FOCs with respect to a firm’s quantity bids (10), which do not require

knowledge of PCiht. We rewrite (10) as follows:

mrijht =
∑

τ∈{H,T}

Xτ
ijhtc

τ −XH
ijht

∫
W
βV (u)

∂f(u|Ωt)

∂SH
iht

du−
N∑
k ̸=i

X̃H
ijht

∫
W
βV (u)

∂f(u|Ωt)

∂SH
kht

du, (11)

where we grouped known terms into the following variables. The left-hand side, mr, is

the marginal revenue or the first line of (10). On the right-hand side, we denote the sum

of the direct and indirect effects,
∂Sτ

iht

∂qijht
+

∂Sτ
iht

∂pht

∂pht
∂qijht

, by Xτ ; the superscript τ indicates the

technology of generator j, whether hidro H or thermal T . In the last term, X̃H denotes

the sum of the indirect effects at i’s competitors in the last line of (10). These terms

and f(·|Ωt) are directly identified from the data. The only unknowns are cτ and β V (·).
Given the linearity of the FOCs, variation in Xτ and X̃H identifies cτ and the coefficient

vectors {γr}Rr=1 approximating V (·). We postpone the analysis of the policy function to

the next section where we run counterfactual analyses.

5.2.1 Estimation

Estimation requires fixing the number of coefficients, R, and the bases Br, for approximat-

ing V (·). Typically, a standard spline approximation of a univariate function necessitates

five bases, or knots (e.g., Stone and Koo, 1985, Durrleman and Simon, 1989). Hence,

five parameters must be estimated to approximate a function in one dimension. With

four firms, allowing for interactions between all the bases would require estimating 54

parameters, which is not feasible, given that we need to instrument them. Our working

assumption, echoed by the empirical results in Section 3.2.3, is that a firm only consid-

ers its future water stock when bidding. With this assumption, the transition matrix

f(w|Ωt) simplifies to f(w|Ωt), and a firm’s future profits, β V (w), depend on its future

water stock and its law of motion (8) through Ωit but on w−it only through DR
iht.

We allow the transition matrix to vary across firms, fi(·|Ωit). We model firm-level

water inflows using an ARDL model mirroring the estimation of inflow forecasts in Section

3 (Pesaran and Shin, 1995). The unexplained portion, or model residual, informs the

probability that firm i will have a certain water stock tomorrow, given the current water

stock and net inflows. For each firm, we fit this data with a Type IV Pearson distribution,

a commonly used distribution in hydrology. This distribution’s asymmetric tails assist

in exploring firms’ behaviors during water-scarce and abundant periods. Appendix B

outlines the estimation of the transition matrix and discusses its goodness of fit.

Under these assumptions, the moment condition is expressed as:

mrijht =
∑

τ∈{H,T}

cτXτ
ijht −XH

ijht

5∑
r=1

γr

∫ wi

wi

Br(u)
∂fi(u|Ωit)

∂SH
iht

du+ FE + εijht, (12)
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where we modeled β ·V (w) ≃
∑5

r=1 γr ·Br(wr) so that no assumption about the discount

factor is needed. We assume that both the marginal costs and the value functions have

a non-deterministic i.i.d. component, which gives rise to the error term εijht in (12).

The estimation of {cτ}τ∈{H,T} and {γr}5r=1 requires instruments as unobserved vari-

ation in supply and demand (e.g., an especially hot day) might be correlated with Xτ .

We employ variables shifting a generator’s cost to control for endogeneity.28 We also

include various fixed effects in FE to account for constant differences across firms and

generators – in the real world, generators’ operating costs may differ within the hydro

and thermal cathegories – and time-varying factors that affect equally all generators of a

certain technology like changes in gas prices.

5.2.2 Estimation Results

We estimate (12) on daily data from January 1, 2010, to December 31, 2015. We use

two-stage least squares and show the results in Table 2. We change the fixed effects used

in each column. Columns (1) and (2) have fixed effects by week, while Columns (3) and

(4) use daily fixed effects. Columns (2) and (4) also include month-by-technology fixed

effects, in addition to fixed effects by firm, generator, and time. These adjustments help

us control for seasonal factors differently affecting technologies over time.

The table has four panels. The first two panels show estimates for thermal (cT ) and

hydro (cH) marginal costs and for the five value function parameters (γr). The third

panel indicates the fixed effects, whereas the last panel displays test statistics for the IVs.

Focusing on Columns (2) and (4), which control for seasonal variation by technology,

we find that thermal marginal costs are about 140K Colombian pesos (COP) per MWh,

or about the average price observed in the market between 2008 and 2016 (Figure 3)

confirming that these units operate only during draughts, as Panel (b) of Figure 2 indi-

cates. Consistently, the cost of operating hydropower is considerably lower, making this

technology the inframarginal one. Because of the spline approximation, the γr estimates

have, instead, no economic interpretation.

Although direct comparison with other papers are challenging as engineer estimates

often report the levelized cost of hydropower, which is the discounted sum of investments

and operations over the lifetime of a dam, we can still compare our thermal marginal

cost estimates. In USD, these estimates range between $45.57 and $70.44 per MWh in

US dollars, considering fluctuations in the peso-to-dollar exchange rate over the sample

period. Our findings align with other studies and engineering assessments, which typically

28The set of instruments includes temperature at the dams (in logs) for hydropower generators and
lagged gas prices (in logs) for thermal generators, which we interact with monthly dummies to capture
unforeseen shocks (i.e., higher-than-expected evaporation or input costs), switch costs, which we proxy
by the ratio between lagged thermal capacity employed by firm i’s competitors and lagged demand,
and its interaction with lagged gas prices (in logs) for thermal generators. Importantly, gas is a global
commodity, and we expect that Colombian wholesale energy firms cannot manipulate its market price.
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Table 2: Estimated model primitives

(1) (2) (3) (4)

Marginal Costs (COP/MWh)
Thermal (ψthermal) 20,3677.62∗∗∗ 141,668.46∗∗∗ 22,1304.18∗∗∗ 144,744.21∗∗∗

(1,711.10) (1,875.29) (1,665.82) (1,561.62)
Hydropower (ψhydro) 64,258.02∗∗∗ 20,123.07∗∗∗ 29,187.79∗∗∗ 52,755.37∗∗∗

(6,692.81) (5,309.73) (3,931.92) (3,731.31)
Intertemporal Value of Water (COP/MWh)

Spline 1 (γ1) –2,950.20∗∗∗ –6,812.77∗∗∗ –11664.64∗∗∗ –3,812.18∗∗∗

(908.25) (528.12) (526.66) (385.60)
Spline 2 (γ2) –2.301e-03∗∗∗ –1.546e-04 6.286e-04∗∗∗ –8.402e-04∗∗∗

(3.213e-04) (1.456e-04) (1.819e-04) (1.036e-04)
Spline 3 (γ3) –3.527e-09∗∗∗ 1.919e-08∗∗∗ –1.932e-08∗∗∗ 1.712e-08∗∗∗

(1.282e-09) (1.041e-09) (1.174e-09) (8.106e-10)
Spline 4 (γ4) 3.246e-08∗∗∗ –3.119e-08∗∗∗ 4.536e-08∗∗∗ –2.729e-08∗∗∗

(2.422e-09) (1.894e-09) (2.057e-09) (1.492e-09)
Spline 5 (γ5) –1.414e-08∗∗∗ 9.357e-08∗∗∗ 5.167e-08∗∗∗ 8.566e-08∗∗∗

(3.053e-09) (2.950e-09) (2.480e-09) (2.568e-09)
Fixed Effects

Firm ✓ ✓ ✓ ✓
Generator ✓ ✓ ✓ ✓
Month-by-technology ✓ ✓
Hour ✓ ✓ ✓ ✓
Week-by-year ✓ ✓
Date ✓ ✓

SW F (ψthermal) 194.34 162.86 1,919.25 168.62
SW F (ψthermal) 3,300.46 1,170.68 2,889.26 1,000.69
SW F (ψhydro) 458.72 267.20 877.47 360.16
SW F (ψγ1) 272.15 201.92 274.58 214.83
SW F (ψγ2) 220.24 266.10 266.58 292.22
SW F (ψγ3) 466.55 494.96 291.98 491.58
SW F (ψγ4) 570.57 577.42 292.40 566.81
SW F (ψγ5) 419.44 1,156.74 432.57 920.39
Anderson Rubin F 1,213.31 1,395.05 1,527.77 1,539.08
KP Wald 143.70 142.85 138.91 147.23
N 1,451,592 1,451,592 1,451,592 1,451,592

* – p < 0.1; ** – p < 0.05; *** – p < 0.01

Notes: This table presents the coefficients obtained estimating (12) by two-stage least squares on daily
data between January 1, 2010, and December 31, 2015. The top panels separate the marginal cost
estimates and the value function parameters from the fixed effects used in estimation, which vary across
columns. Our favorite specification is in Column (4), which includes day-fixed effects. The bottom panel
provides diagnostic tests in the first stage. Robust standard errors. 2,900 COP ≃ 1 US$.

estimate operating costs for coal-fired plants between $20 and $40 per MWh and for gas-

fired plants between $40 and $80 per MWh (e.g., Blumsack, 2023).29

29As an illustration, Reguant (2014) estimates that thermal production in Spain ranged between e30
and e36 per MWh in 2007, when oil and gas prices were significantly lower compared to the period
under our consideration. In 2007, the average yearly oil price stood at $72 per barrel, while from 2010
to 2015, it averaged $84.70 per barrel, with peaks exceeding $100 per barrel.
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We present several robustness checks in the appendix. First, we show that changing

the number of knots to approximate β V (·) is inconsequential. Appendix Table D1 esti-

mates the model using four knots instead of five and finds similar results. We also find

consistent results when we use a normal distribution for the transition matrix instead of

a Pearson Type IV distribution either (Appendix Tables D2 and D3).

In the next section, we use the estimated primitives to assess the price consequences

of moving thermal capacity to the market leader.

6 Quantifying the Benefits of Diversification

This section first explains our simulation framework (Section 6.1) and investigates its

goodness of fit (Section 6.2). Then, Section 6.3 performs counterfactual analyses by

reallocating thermal capacity in the spirit of Section 4.

6.1 The Simulation Model

We base our simulation exercises on a firm’s objective function (9) because the first-

order conditions in (10) alone are not sufficient for optimality. However, solving for

the supply function equilibrium of the whole game for each firm and hourly market

of the six years in our sample is computationally unfeasible. Therefore, following the

approach of Reguant (2014), we construct a computational model based on (9). This

model numerically determines a firm’s optimal response given the strategies of other

firms in each hourly market, employing a mixed-linear integer programming solver.30

In essence, we evaluate the model’s performance by simulating the bids of EPMG, the

leading firm in the market, while treating the bids of its competitor as given.31

To ensure a global optimum, the solver requires that we discretize the technology-

specific supplies over K steps each. On each day t, the firm selects the K-dimensional

vector of hourly quantities {qτ
ht,k}23h=0 for each technology τ (hydro or thermal) to solve:

max
{qτht,k}

K,23,T
k,h,τ

23∑
h=0

[
GR(D̄R

ht)−
∑

τ∈{H,T}

K∑
k=1

ĉτqτht,k

]
+ β

M∑
m=1

EV̂t+1,m(wt+1|wt,

K∑
k=1

23∑
h=1

qHht,k),

s.t.

30Note that not observing PCht is not a problem here because a firm’s optimal action does not
depend on it. We implement the analysis through the Rcplex package in R and the IBM ILOG

CPLEX software to solve this mixed-linear integer problem, which are freely available for academic re-
search at https://cran.r-project.org/web/packages/Rcplex/index.html, and https://www.ibm.

com/it-it/products/ilog-cplex-optimization-studio.
31We choose EPMG because it has the largest demand semi-elasticity in the period under analysis

(Appendix Figure F2). 80% of its total capacity is in hydropower (Figure F1).
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[Market-clearing:] D̄R
ht(pht) =

∑
τ∈{H,T}

K∑
k=1

qτht,k, ∀ h, (13)

[Constraints on residual demand steps:] 0 ≤ DR
ht,z(pht) ≤

∑
τ∈{H,T}

capτht/Z, ∀ h, z,

[Constraints on supply steps:] 0 ≤ qτht,k ≤ capτht/K, ∀ h, τ, k,

[Constraints on value function steps:] 0 ≤ EV̂t+1,m ≤ capHht/M, ∀ h, τ,m.

Here, we dropped the subscript i because the focus is on EPMG. The gross revenue

function, GR(D̄R
ht), is a discretized version of the static revenues in (7). It depends on

D̄R
ht(pht) =

∑Z
z=1 1[pht,z≤pht]D

R
ht,z, a step function composed of Z steps describing how

EPMG’s residual demand varies with the market price, pht. The cost function is equal

to the cost of producing
∑

k q
τ
ht,k MWh of energy using the technology-specific marginal

costs estimated in Column (4) of Table 2. The remaining term of (13) is the expected

value function, which depends on the water stock at t, the total MW of hydro generation

produced in the 24 hourly markets of day t, the transition matrix, and the value function

parameters γ̂r estimated in Section 5.2.2. We discretize the value function overM steps.32

Our main focus is on the intertemporal allocation of production capacity across tech-

nologies during prolonged extreme events. Therefore, rather than simulating each daily

market from 2010 to 2015, we aggregate the daily data across weeks and hours. We

then determine EPMG’s optimal response using (13) for each hour-week combination.

This strategy significantly reduces computation time while maintaining precision, as we

demonstrate next.

6.2 Model Fit

In Figure 10, we compare the observed average weekly prices (red line) with the sim-

ulated ones (blue line). The model demonstrates remarkable accuracy in reproducing

price volatility, particularly over the initial four years. However, the occurrence of El

Niño in 2016, an unprecedented dry spell in our sample, likely influenced the transition

matrix in late 2015, resulting in a gap between simulated and observed prices. While the

model does not capture the extreme spike observed in late 2015, where prices surged by

over tenfold, it does predict a five to sevenfold increase. Appendix Table F1 examines

price variation across hours, further demonstrating a strong fit.33 Overall, despite being

very parsimonious – using only seven parameters – the computational model effectively

32The optimization is subject to constraints. The first constraint requires that EPMG’s hourly supply
equals the residual demand at the equilibrium price, pht. The remaining constraints ensure that, at
the prevailing market price, EPMG’s residual demand, supply, and value function do not exceed their
allotted capacity and that supply functions are overall increasing (not reported).

33This simulation uses ten steps for demand, supply, and value function (M = K = Z = 10). Increasing
the number of steps does not affect the goodness of fit (Appendix Figure F3).
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reproduces price volatility in Colombia over a long period.

Figure 10: Model fit: simulated (red) vs. observed prices (blue)
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Note: Comparison between observed (blue) and fitted (red) prices from solving EMPG’s profit maxi-
mization problem (13). The solver employs ten steps to discretize the residual demand, the supply, and
the value function (M = K = Z = 10). 2,900 COP ≃ 1 US$.

6.3 Counterfactual Exercises

To quantify the two sources of market power introduced in 4, this section simulates

market prices by varying EPMG’s thermal capacity through capacity transfers from its

competitors. Using the computational model (13), the counterfactuals slack EPMG’s

thermal capacity constraint and affect its residual demand. Note that the estimated

value function parameters ({γr}Rr=1) might vary under different industry configurations

if we viewed them as equilibrium objects. To solve for the new parameters, we would

need to observe the counterfactual quantity submitted, which is unfeasible. However,

if we could solve for the new equilibrium parameters ({γ′r}Rr=1), Proposition 2 suggests

that the marginal benefit of holding water decreases with a firm’s thermal capacity: we

would expect EPMG to offload even more water than our counterfactual predicts for

every possible demand realization, meaning lower prices on average.34 Therefore, this

counterfactual analysis is identified in the spirit of Kalouptsidi et al. (2021).35

34Alternatively, since we estimate the model on the whole industry, we could interpret the {γ′
r}Rr

coefficients as reflecting the industry preference for holding water, which we assume constant in Table 2.
35Transferring thermal generation to the market leader firm provides it with only one reasonable

extra action because of the merit order (“use the newly added capacity when all other capacities are
exhausted”). As the added strategy does not affect the transition matrix, Proposition 4 of Kalouptsidi
et al. (2021) holds: given a residual demand, the marginal profit of taking the new action depends only
on the total capacity, ensuring that the counterfactuals are identified.
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Figure 11 summarises the results from the counterfactual exercises. In Panel (a), we

move capacity from fringe firms (i.e., all the firms with no dams). The generators of

these firms submit positive quantity bids for prices equal to their marginal cost: when

we transfer κ% of generator k’s capacity, we do not update generator k’s supply if its

unused capacity is large enough. Otherwise, we reduce k’s quantity bid accordingly. We

transfer capacity from all firms in Panel (b), including EPMG’s strategic competitors.

Theoretically, we should update the bids of the strategic firms in every scenario according

to (13), but it is computationally infeasible. However, because of strategic complemen-

tarities in bidding (see Section 4), price changes can be interpreted as lower bounds for

the magnitude of the actual price drop (increase) when EPMG expands (reduces) its sup-

ply after a change in its thermal capacity. For this reason, we do not investigate overall

price changes from a transfer but rather focus on quantifying the scarcity / abundance

scenarios from Section 4.

Each panel displays a heatmap depicting market rankings based on the severity of

drought experienced by EPMG on the x-axis (categorized into deciles of its water stock)

and the magnitude of capacity transfer on the y-axis. Each cell within the heatmap

illustrates the average disparity between the counterfactual and status quo market prices:

darker shades of blue (red) indicate lower (higher) counterfactual prices. It’s important

to note that the water stock serves as a basic measure of drought, devoid of considerations

about future inflows. Appendix G provides additional robustness checks using inflows on

the x-axis. Given that these metrics only partially capture drought occurrences, the color

transition across columns does not necessarily have to be smooth.

Figure 11: The price effect of a capacity transfer to the market leader
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Notes: The figure presents the results from comparing counterfactual market prices as we endow the
market leading firm with greater fractions of its competitors’ thermal capacities (y-axis) for varying
scarcity levels (x-axis) with baseline prices. Top (bottom) panels proxy scarcity by grouping markets
based on the deciles of the firm’s water inflow (stock): each cell reports the average price difference
between the simulated market and the status quo with different shades of red and blue colors based
on the sign and magnitude. The left (right) panels move capacity from fringe (all) firms. The average
market price is approximately 150,000 COP/MWh. 2,900 COP ≃ 1 US$.
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Varying capacity transfers. We first compare outcomes across transfer levels – i.e.,

within columns. In the first row of in Panel (a), EPMG is endowed with 10% of the fringe

firms’ thermal capacity. We find lower energy market prices on average across almost

all periods but the highest decile. Zooming in on transfers lower than 50% to better

appreciate the magnitude changes, Panels (a) and (c) of Appendix Figure G1 show that

most of the price gains are in dry periods (southwest portion of the plot). Here, price

gains can be substantial, reaching values between 8,000 and 13,000 COP/MWh (slightly

less than 10% of the average energy price) when moving 20% to 30% of the capacity

available to the fringe firms.36

In contrast, counterfactual prices mostly increase for large transfers, especially in the

driest periods. During these periods, EPMG behaves as the standard textbook model

would predict for a non-diversified firm that faces an increasingly vertical residual de-

mand: it lowers output, leading to higher prices. Hence, prices first decrease for low

transfers and reach a bottom level before increasing for higher transfers – a similar pat-

tern to that observed in Panel (b) of Figure 7 where the capacity channel dominates the

efficiency channel at first.

Varying drought severity. We now turn to comparing outcomes across drought sever-

ity – i.e., within rows. Panel (a) suggests a diagonal division between red and blue areas

running South East (abundance and low transfers) from the North West side of the plot

(scarcity and high transfers). Zooming in again on transfers smaller than 50% in Ap-

pendix Figure G1, we find that, given a transfer decile (row), cells become gradually less

blue, and especially so in the first row (10% transfer). Thus, the gains from the transfers

are generally larger in dry spells compared to wet periods.

Percentage price changes. A 10,000 COP price increase during drought is very dif-

ferent compared to a similar change during an abundant period, where prices are lower.

To better compare prices across columns, we rebase the difference between counterfac-

tual and simulated prices by the latter and present its average value in each cell (i.e.,
1

H·T
∑H,T

h,t

pκ%ht −pbaseht

pbaseht
, where superscripts κ% and base denotes counterfactual and baseline

prices, respectively). Appendix Figure G2 presents the same analysis produced above

using these percentage deviations. Also after controlling for baseline market prices, there

are no gains from transferring thermal capacity when the firm has a large amount of hy-

dropower capacity, but there are gains in the order of 10% of market prices from limited

reallocations of capacity during scarcity.

Reallocating from fringe or strategic firms? Finally, Panel (b) of Figure 11 investi-

gate when the thermal capacity transfers come from all firms, including the other diver-

sified firms. In this case, the magnitude of the price increase (gains) is larger (smaller)

compared to Panel (a) as EPMG’s residual demand is now steeper. Large transfers from

36To give an idea of the transfer size, it would double EPMG’s thermal capacity.
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strategic firms reduce the capacity available to them, decreasing the extent of market

competition more than if capacity transfers were from fringe firms only.

7 Concluding Remarks

Conventional wisdom holds that market power hinges on demand factors such as elastic-

ities, while supply factors act more like benchmarks (e.g., Nocke and Whinston, 2022).

Mergers, for instance, are scrutinized for potential anti-competitive effects if they are

expected to exceed the claimed cost synergies. Our paper diverges from this standard

narrative by placing technology at the forefront of market power analysis. We argue that

firms should be viewed as portfolios of various technologies, each with its own marginal

cost and production capacity, rendering them “diversified.”

Drawing from the Colombian energy sector, whose regulatory framework mandates

energy suppliers to report production by technology, we demonstrate both empirically and

theoretically that oligopolistic competition among diversified firms results in a trade-off

between capacity and efficiency forces. On the one hand, larger firms can cover a greater

portion of the market demand, incentivizing them to decrease production to raise prices.

On the other, monopolistic rents may result from a technology’s relative efficiency and

may push firms to crowding out competitors, thereby decreasing prices. Moreover, we

show that the mere availability of multiple technologies creates complementarities within

a firm, as access to less efficient technologies relaxes the capacity constraints of the

efficient ones, prompting firms to increase production across the board. These findings

have implications for the way we measure capital, antitrust policies, and the transition

toward greener energy markets, which we discuss further in the following sections.

7.1 Remarks on Antitrust Policies with Diversified Firms

Capital, in economic models, is typically treated as a homogeneous input, representing the

aggregate of all investments a firm has made since its inception (e.g., Olley and Pakes,

1996). While economists recognize this as a necessary simplification, there has been

limited exploration into the implications of this assumption due to several factors. Firstly,

if introducing heterogeneity merely minimizes measurement errors, the benefits might be

outweighed by the loss of tractability. Secondly, data on production by technology is

scarce, making it uncertain whether firms truly engage in diversified production.

Our paper addresses this gap by revealing that heterogeneous capital holds strategic

significance within standard oligopoly models. Specifically, when a firm with a cheap

technology but limited capacity adds a more expensive technology, the value of the cheap

technology increases for the firm. As a result, the firm is willing to use more of the

cheap technology to dominate the market. In response, competitors adopt aggressive

37



pricing strategies to safeguard their market share, even if it means sacrificing revenues

on marginal units.

The key takeaway from our analysis is that we should consider a broader view when

we analyze market concentration. In industries with high barriers to entry where firms

have significant pricing power, achieving the optimal technology mix can drive prices

down more than policies focused solely on limiting firm size. For instance, Colombian

regulations cap firm capacity at 25% of the industry, hindering diversification due to the

scale of dam projects.

These insights also shed light on the landscape of horizontal merger policies, which

traditionally rely on concentration as a primary gauge of market distortions (e.g., Benkard

et al., 2021). In particular, standard tools used by antitrust agencies to curb concentra-

tion post-merger, such as divestitures, may be anti-competitive. Beyond simply reducing

capacities, divestiture can also diminish firms’ diversification, thereby limiting their abil-

ity to respond to scarcity events like periods of high input costs. This could trigger less

aggressive pricing from competitors and lead to higher market prices.

Our findings are not driven by standard synergies typically associated with merg-

ing parties benefiting from economies of scale or scope. For example, it is common to

model the marginal cost of a merger between two firms, each with costs ca and cb, as

min{ca, cb}, often attributed to improved managerial practices (e.g., Braguinsky et al.,

2015, Demirer and Karaduman, 2022) or technological advancements (e.g., Ashenfelter

et al., 2015, Miller and Weinberg, 2017). However, in our framework, “synergies” come

from equilibrium responses rather than from economies of scale or scope. These syner-

gies are similar to those seen in mergers of multiproduct firms, as described by (Nocke

and Schutz, 2018a). In such mergers, the markup that the merged company charges

for a specific product reflects demand elasticity and the cannibalization effects across

its other various products. Similarly, our equation shows that a firm’s markups, when

selling a homogeneous product from multiple technology, depend on demand elasticity

and crowding-out incentives created by the opportunity to undercut competitors with

one specific technology.

We believe that our model and results are widely applicable. Firstly, based on Klem-

perer and Meyer (1989)’s discussion, we believe our model and insights can be effectively

applied to multi-product firms. Second, our model operates on the premise of uncertain

demand, with firms committing to a supply curve before demand is realized. In reality,

large firms are likely to have some private information about their residual demand, and

the quantity supplied will depend on this information. So effectively, firms do commit to a

supply curve, and hence, our model also applies to other industries where firms are diver-

sified across multiple technologies. For example, Collard-Wexler and De Loecker (2015)

studies various methods for alumina production, while labor inputs may also exhibit di-

verse efficiency – based on worker types – and capacity – based on total headcounts –
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(e.g., Bonhomme et al., 2019).

7.2 Remarks on the Green Transition with Diversified Firms

The energy sector is responsible for a large share of global CO2 emissions (IEA, 2023),

necessitating a transition to less-carbon-intensive technologies such as renewables (e.g.,

Elliott, 2024). While renewables are generally inexpensive, their intermittent nature

can lead to high prices during periods of scarcity. As energy prices, like those of other

utilities, decrease consumers’ disposable income, disproportionately affecting low-income

consumers (Reguant, 2019, Haar, 2020), the energy transition might widen current in-

equality trends, highlighting the need for governmental agencies to actively manage and

mitigate high energy price scenarios during the transition.

To encourage generators to produce more during scarcity events, governments have

implemented policies like the reliability charge outlined in Section 5. These policies

require generators to produce a set amount of energy when prices rise above a certain

threshold, with subsidies as incentives. However, these subsidies are costly and can

provide incentives to firms with market power to increase prices to access the subsidies

(McRae and Wolak, 2020).37

The question of ownership of the means of production has long been contentious in

transitioning economies (e.g., Murphy et al., 1992), and the pursuit of the green transition

is no exception. In this context, our research introduces a novel approach to tackle

intermittencies in the energy sector by leveraging ownership links. We find that generators

unaffected by scarcity can absorb the scarcity experienced by renewable generators owned

by the same firm, especially when the firm holds market power. While perfect competition

would ideally lead to the first-best outcome, this might be hard to enforce by policymakers

because the marginal cost of a renewable generator is the sum of operating costs and

intertemporal opportunity costs, which might be unknown to policymakers. Thus, our

results suggest policymakers can look for the optimal level of diversification within firms

instead to lower energy prices. Our analysis suggests that transferring non-renewable

capacity to a firm anticipating a drought could reduce price spikes by around 5 to 10%

(see Appendix Figure G2), as these generators internalize scarcity periods at sibling

dams, a meaningful reduction particularly during drought periods with little cost during

abundance periods.

In Colombia, hedging against energy scarcity predominantly relies on fossil fuels,

contributing to increased CO2 emissions and impeding the transition to green energy.

37Since firms can anticipate scarcity events (Figure 4), forward contract markets serve as an additional
hedging avenue (e.g., Anderson and Hu, 2008, Ausubel and Cramton, 2010). However, their effectiveness
is limited as, according to our model, firms only internalize dry spells through ownership connections.
Their effectiveness is further diminished by evidence indicating that forward prices track spot market
prices (de Bragança and Daglish, 2016, Huisman et al., 2021).
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This reliance stems from the geographical concentration of dam ownership, a legacy of

privatizations in the 1990s. Had dam ownership been more diversified across regions

– as opposed to the ownership structure depicted in Figure 8 – reliance on dams with

varying inflow seasonality could have provided an alternative form of hedging, potentially

reducing emissions and enhancing welfare compared to the current situation.

As of 2024, Colombia’s renewable energy capacity from solar and wind sources re-

mains limited, constituting only 1.5% of the total installed capacity. However, there were

notable developments, with twelve wind projects totaling 2,072 MW and six solar projects

totaling 908 MW under construction by the end of 2022. Additionally, the Colombian

governmental agency responsible for natural resource management, Unidad de Planeación

Minero Energética, approved several other solar and wind farm projects set to commence

operations by 2027 (Arias-Gaviria et al., 2019, Rueda-Bayona et al., 2019, Moreno Rocha

et al., 2022). Once operational, these projects are projected to contribute approximately

38% of Colombia’s installed capacity (SEI, 2023). With ongoing advancements in storage

technology and declining battery costs (Koohi-Fayegh and Rosen, 2020), renewables are

poised to emerge as a more cost-effective alternative to fossil fuels for hedging against

energy scarcity, particularly for hydropower.

Diversified firms are well-positioned to internalize scarcity efficiently. Further invest-

ments in renewable energy infrastructure and a well-designed ownership structure promise

to facilitate a swift and economical transition toward a greener economy.
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A Theoretical Appendix

Appendix A.1 defines supply function equilibria and derives the FOCs using ex post
optimization. Appendix A.1.1 analyze an asymmetric duopoly for which we can assess
the impact of technology reallocation analytically. These counterfactual analysis are in
Appendices A.1.2, with proofs in A.2.2, and A.2.3. Appendix A.1.3 solves for a different
counterfactual where firms are symmetric and have access to both technologies. Appendix
A.2.1 hosts a set of lemmas and proofs for the existence and uniqueness of the SFE.

Appendix A.3 proves Proposition 2, which we introduced in the structural model in
Section 5. It demonstrates that the marginal benefits of holding water decrease in a firm’s
thermal capacity.

A.1 Theoretical Model of Section 4

An industry has N firms producing a homogeneous good. The industry demand is in-
elastic D and is subject to an exogenous shock ϵ, where ϵ is a random variable and that
D(ϵ) > 0 can take any positive value. The ϵ can be a horizontal translation of D as in
Klemperer and Meyer (1989).

Assume that Firm i ∈ {1, ..., N} has total cost function Ci(S) ≥ 0 when i produces
S units of goods. Intuitively, when S is larger than i’s capacity, the cost of production
becomes ∞.

A strategy for firm i is a non-decreasing, left-continuous, and almost everywhere
differentiable function mapping prices to a maximum level of output for that price, i.e.,
Si(p) : [0,∞) → [0,∞). Firms choose their supply functions simultaneously without
knowledge of the realization of ϵ. The market price, p∗, is the smallest p such that D(ϵ)
is satisfied. That is, industry demand matches industry supply according to the market
clearing condition:

p∗(ϵ) := min

{
p ∈ [0,∞) such that

∑
j

Sj(p) ≥ D(ϵ)

}
. (A1)

The minimum is well defined for Si are non-decreasing and left-continuous. We denote
p∗(ϵ) simply by p∗ to reduce notation from now on.

After the realization of ϵ, supply functions are implemented by each firm producing
at (p∗, Si(p

∗)). Firm i sells Si(p
∗) and gets p∗ on each unit it sells. Its profit is

πi(p
∗) = p∗ · Si(p

∗)− Ci(Si(p
∗)). (A2)

We denote i’s residual demand as DR
i (p, ϵ) ≡ max{0, D(ϵ)−

∑
j ̸=i Sj(p)}. In equilibrium

(to be defined next), i’s quantity supplied equates to its residual demand at the market
clearing p∗, i.e. Si(p

∗) = DR
i (p

∗, ϵ). Hence, firm i’s ex post profit is equivalently

πi(p
∗) = p∗ ·DR

i (p
∗, ϵ)− Ci(D

R
i (p

∗, ϵ)). (A3)

Ex post optimization. As in Klemperer and Meyer (1989), the ex post profit-
maximizing level of production for each firm depends on the realization of its residual
demand curve. Given the strategy of the other firms, the residual demand curve for i
changes as ϵ varies. Given each ϵ if there is a profit maximizing level of production qi
with an associated market clearing price level p. As ϵ varies, these two quantity can be
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described by a supply function qi = Si(p). It can be seen that by committing to Si, i can
achieve ex post optimality for every realization of the demand.1

Definition A.1 Supply Function Equilibrium (SFE). An equilibrium is an N-tuple
of functions (Sl(p))

N
l=1 such that given each firm j ̸= i chooses Sj(p), for every realization

of ϵ, Si(p
∗) = DR

i (p
∗, ϵ) for which p∗ maximizes i’s ex post profit in (A3).

FOCs using ex post optimality. The ex post optimality can be obtained when i solves
at every ϵ:

max
p
πi(p) := p ·

(
D(ϵ)−

∑
j ̸=i

Sj(p)
)
− Ci(D

R
i (p, ϵ)), (A4)

which admits the following FOCs almost everywhere with i supplying positive quantity,

p
∂DR

i (p, ϵ)

∂p
+DR

i (p, ϵ)− C ′
i ·
∂DR

i (p, ϵ)

∂p
= 0 ⇐⇒ (p− C ′

i)S
′
−i(p) = Si(p), (A5)

where the second equality follows from market clearing Si = DR
i (p, ϵ) and we use S−i(p) :=∑

j ̸=i Sj(p). If for instance, (A3) is globally strictly concave in p, then (A5) implicitly
determines i’s unique profit maximizing price p∗i (ϵ) for each value of ϵ. The corresponding
profit maximizing quantity is D(ϵ)−

∑
j ̸=i Sj(p

∗
i (ϵ)) ≡ q∗i (ϵ).

2

From (A5), one can observe that when C ′
i = ci on some open interval of produc-

tion levels, the model exhibits strategic complementarities and the markup reflects the
elasticity of demand and a crowding out ratio.

Proposition A.1 Strategic complementarities. When C ′
i = ci, i’s best response Si

to S−i is increasing in S ′
−i, and S

′
i is increasing in the level of S ′

−i.

It follows immediate from (A5) and its total derivative w.r.t. p: (p− ci)S
′′
−i + S ′

−i = S ′
i.

Clearly, firms react by bidding more aggressively (increase both Si and S ′
i) when

opponents bid more aggressively (increase S ′
−i to S ′

−i + constant). Hence, both the
intercept and the slope of Si(p) increase with the supply of the competitors, resulting in
strategic complementarity.

Proposition A.2 Crowding-out ratio. Firm i’s markup satisfies
p−C′

i

p
= si

η
·(

S′
i(p)

−DR
i

′
(p)

+ 1
)
, where si is its market share, and η is the price elasticity of demand.

The crowding-out ratio is
S′
i(p)

−DR
i

′
(p)

+ 1.

1Note that neither Bertrand nor Cournot conduct models are ex-post optimal with uncertain demand
and increasing marginal costs. That is, committing to a constant vertical or horizontal supply slope is
not optimal: once ϵ realizes the firm would like to change its production level. Hence, ex ante optimality
does not necessarily imply ex post optimality. Equilibrium supply functions are ex post, and that this
ex post optimality implies ex ante optimality(Klemperer and Meyer, 1989).

2Because ex post optimality implies ex ante optimality, take any distribution of D(ϵ), one can obtain
the same FOCs as the Euler-Lagrange equations through taking variational calculus over different supply
functions.
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This proposition follows immediately from (A5). Denote S(p) :=
∑N

j=1+Sj(p) and

si :=
Si(p)
S(p)

, rewrite (A5) as

p− C ′
i

p
·
(
S ′(p)

S(p)
· p
)

︸ ︷︷ ︸
η

·
S ′
−i(p)

S ′(p)
=
Si(p)

S(p)︸ ︷︷ ︸
si

⇔ p− C ′
i

p
=
si
η
·
(

S ′
i(p)

−DR
i
′
(p)

+ 1

)

where we obtain the price elasticity of demand η using the identiy S(p) = D(ϵ).3 In

particular, we have S ′(p) · dp
dD

= 1, and hence S ′(p) = dD
dp
. Define η as S ′(p) · S(p)

p
, then

η = dD
dp

· S(p)
p

= dD
dp

· D
p
by market clearing. Hence 1

η
= dp

dD
· p
D

is the price elasticity of
demand.

A.1.1 Duopoly Competition with Analytical Solutions

We now specifies the two cases studied in the main text using the theoretical framework
above, and then analytically solve for the equilibrium.

Costs. Firms have access to three types of technologies, high-, low-, and fringe-cost,
such that cl < ch < cf . The technology set is T = {l, h, f}. The total cost of firm i is
Ci ≡

∑
τ∈T c

τSτ
i (p), where we denote i’s supply with technology τ by Sτ

i (p). Firm i has
a given capacity of each technology Kτ

i , so that Sτ
i ∈ [0, Kτ

i ]. Notice that due to the
merit order, each firm always supply with the cheapest technology before adopting the
more expensive ones. Therefore at every total quantity of production, there is a unique
cost-minimizing production allocation to each technology within a firm. So there is a
one-to-one correspondence between (the cost minimizing) total supply function of a firm
and the tuple of supply function by technologies, that Si(p) =

∑
τ∈T S

τ
i (p).

Capacities. A firm is described by a technology portfolio, that is a vector Ki =
(K l

i , K
h
i , K

f
i ), describing the capacity available to firm i for each technology.

Baseline capacities. In general, all the capacities are non-negative. We will focus on
the setting where Firm 1’s technology portfolio is K1 = (K l

1, K
h
1 , 0), where K

h
1 is either

0 as in Section 4 or a small enough number (to be defined in the proof of Appendix
A.2.3, Firm 2’s technology portfolio is K2 = (0, Kh

2 , 0), and non-strategic (fringe) firm i’s
technology portfolio for i ∈ (3, ..., N) is Ki = (0, 0, Kf

i ). We also assume that Kf
i is of

negligible size for all fringe firms, and hence these fringe firms will behave competitively.

Counterfactual scenario. We move δ units of Kh
2 from Firm 2 to Firm 1. The new

technology portfolios are K̃1 = (K l
1, K

h
1 + δ, 0), K̃2 = (0, Kh

2 − δ, 0), and K̃i = (0, 0, Kf
i )

for i ∈ (3, ..., N) .

Demand. Demand is inelastic and subject to a shock ϵ as usual.

Market clearing. There is a large enough number of non-strategic firms. They enter
the market only when the price at least covers their marginal cost, cf . At this price, they
supply all their capacity. Hence, their supply function is Si = 1{p>cf}K

f
i for i ∈ (3, ..., N)

and
∑N

j=3K
f
j is large enough, so that the market always clears for p ≥ cf .4

3Since the demand is vertical, the elasticity of the demand to prices is not defined in our model (η),
but the elasticity of prices to demand is (1/η).

4Different assumptions are possible. For instance, we could obtain a downward sloping residual
demand assuming a price cap, which is often employed in energy markets, an idiosyncratic cf ∼ F (·)
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Without loss of generality, we assume that in equilibrium, the strategic firms have
priority in production over the fringe firms at price p = cf .5 Hence, for any realization
D of D(ϵ), given the schedules Si(p), the market clearing price from (A1) becomes

p∗ = min
{
cf , inf

{
p
∣∣ N∑

i

Si(p) ≥ D
}}
. (A6)

Residual demand. Therefore, for i = 1, 2, Firm i’s residual demand function is

DR
i (p, ϵ) =


D(ϵ)− S−i(p), for p ∈ [0, cf ),

min{D(ϵ)− S−i(p),
∑

τ K
τ
i }, for p = cf ,

0, for p > cf ,

where S−i(p) ≡
∑

j ̸=i Sj(p).

Profits and best responses. We update (A3) according to the new cost functions.
Given the opponent’s strategy, the profit of firm i with cost function Ci at the market
clearing price p is

πi(p) = DR
i (p, ϵ) · p−

∑
τ∈T

cτSτ
i (p). (A7)

Following the definition of an SFE (A.1), in this duopoly context, an SFE is a pair of sup-
ply functions Si(p) =

∑
τ S

τ
i (p) for i ∈ {1, 2} that maximizes the ex post profit (A7) for

each i at every possible level of D(ϵ) and for which the price p clears the market. More-
over, Each non-strategic firm, being a marginal player, sell its entire capacity whenever
p ≥ cf and do not produce otherwise.

The following lemmas are useful to compute the SFE, on which we turn next.6

Lemma A.1: in equilibrium, the supply functions are strictly increasing on (ch, cf ) and
no firm exhausts its total capacity for p < cf . Intuition: when such p is realized, the
constrained firm can reduce production by ϵ, causing the price to have a discrete jump
to cf , a profitable deviation.

Lemma A.2: one of the two firms will exhaust its capacity as p → cf from below.
Intuition: If both firms do not exhaust their capacity at cf , one of them can deviate and
choose to exhaust the capacity at price cf − ϵ to engage in a Bertrand style competition
to increase its profit.

Lemma A.3: production decisions based on themerit order are optimal (i.e., a diversified
firm first exhausts its low-cost capacity before moving to the high-cost one).

Lemma A.4: supply functions are differentiable almost everywhere for p ∈ (ch, cf ).
Intuition: (Si(p))i={1,2} are the solutions of a system of differential equations that are
increasing and continuous. The only point where Si(p) is not differentiable is at p̂ s.t.
S1(p̂) = Sl

1(p̂) = K l
1, that is the price at which Firm 1 exhausts its low-cost capacity and

starts producing with its high-cost capacity.

for each fringe firms, or a downward sloping demand curve. Obtaining an analytical solution will then
depend on the specific distribution F (·) or on the elasticity of the market demand.

5This is w.l.g. because, due to a standard Bertrand argument, Firm 1 and Firm 2 could sell at a price
p = cf − ϵ for a small ϵ > 0 and get the whole market.

6Lemmas A.2, A.3, and A.4 can be generalized to more than two strategic firms, in which case, S−i(p)
should be interpreted as the horizontal sum of the supplies of i’s rivals.
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Lemma A.5: technical step proving that the conditions under which the equilibrium
supply functions computed in the next section are unique.

With the above Lemmas, one can show that an SFE exists and is unique.

Proposition A.3 The duopoly competition defined in Appendix A.1.1 has a unique SFE.

We postpone the proofs of the Lemmas and the Proposition to Appendix A.2.1. Below
we study the comparative static of relocating capacities from Firm 2 to Firm 1 and its
effect on market prices.

A.1.2 Reallocation of Capacities

We consider a small capacity reallocation δ > 0 from Firm 2 to Firm 1, so that the
new technology portfolios become K̃1 = (K l

1, K
h
1 + δ, 0), K̃2 = (0, Kh

1 − δ, 0), and K̃l =
(0, 0, Kf

l ) for fringe firm l = (3, ..., N).

Proposition 1 A marginal capacity transfer from Firm 2 to Firm 1 increases the equi-
librium price if K l

1 >
cf−cl

cf−ch
Kh

2 (abundance scenario) and decreases it if K l
1 <

cf−cl

cf−ch
Kh

2

(scarcity scenario).

We prove the part relating the abundance scenario in Appendix A.2.2 and the part
relating to the scarcity scenario in Appendix A.2.3.

To understand the proof of Proposition 1, observe that Firm 1 has a dominating
capacity in the abundance scenario. Reallocating δ capacity to Firm 1 exacerbates its
position of market power vis-à-vis Firm 2. As Firm 2 exhausts its capacity as p → cf

from below, the proof shows that Firm 1 uses the δ capacity only for p = cf . Effectively,
the transfers remove capacity from the market for p ∈ (ch, cf ), leading to higher prices
for non-extreme realizations of D(ϵ). That is, Firm 1 gains from the inframarginal units
sold at a higher market price. The same proof can be used to show that the analogous
result holds when there is no diversification. Any reallocation from the smaller firm to
the larger firm when both own the same technology increases the market price.

On the other hand, a marginal transfer of δ in the scarcity scenario incentivizes the
Firm 1 to employ its low-cost technology to crow-out Firm 2 for every realizations of
D(ϵ). The proof shows that in this situation, Firm 1 exhausts all its capacity before
Firm 2 as p → cf from below. Hence the δ greater capacity slacks the cost constraint
faced by Firm 1, and Firm 1’s equilibrium supply schedule expands after the transfer.
Firm 2’s supply expands as well because of strategic complementarity (Section A.1). We
call these two forces the “crowding out” incentives. Loosely speaking, they arise because
SFEs include Bertrand competition as an extreme case.7

A.1.3 Reallocation Under Symmetry

This section studies a similar capacity reallocation of high-cost technologies from Firm 2
to Firm 1 under the case where both Firm 1 and Firm 2 have the same technology portfolio
K1 = K2 = (Kh, K l, 0). The technology portfolio of the fringe firms stay unchanged.

7Note that firms’ optimal strategies are strategic complement in Bertrand as they are in SFEs. Lemma
A.4 states that supply schedules generally do not display vertical jumps in equilibrium because they are
smooth almost everywhere. Vertical supply schedules are typical under Cournot competition where a
firm produces the same quantity at all prices. In fact, equilibrium strategies in Cournot games feature
strategic substitution, unlike in the SFEs we study.

6



Figure A1: Supplies of Firm 2 and fringe firms before and after the transfer
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(a) Abundance scenario
K1 = (9, 0, 0)&K2 = (0, 4, 0)
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(b) Scarcity scenario
K1 = (5, 0, 0)&K2 = (0, 4, 0)

Notes: Each panel illustrates the equilibrium supply of Firm 2 and the supply of fringe firms (gray

dotted lines) under abundance in Panel (a) and scarcity in Panel (b) using the parameters as in Figure

7. The cost of Firm 2 is the dotted blue line. Solid (shaded) lines refer to Firm 2’s costs and supply

after (before) the capacity transfer of 0.5 units from Firm 2 to Firm 1.

Proposition A.4 In the duopoly competition defined in Section A.1.3, a marginal ca-
pacity transfer from Firm 2 to Firm 1 increases the market price.

The proof is in Appendix A.2.4. One can view the symmetric case as the optimal
benchmark. No reallocation can increase competition in the market. Indeed, reallocating
high-cost capacities, decreases the competitivity of one firm similar to the abundance
scenario.

A.2 Proofs of Propositions and Lemmas

A.2.1 Proof of Proposition A.3 (Existence and Uniqueness of the SFE)

The proof relies on the following Lemmas.

Lemma A.1 In equilibrium, Si(p) <
∑

τ K
τ
i for every p < cf . Moreover, Si(p) is strictly

increasing on the interval (ch, cf ).

Proof. Suppose on the contrary that firm i exhausts all its capacity at some price s.t.
Si(p̂) =

∑
τ K

τ
i for p̂ < cf . Since Si(p) is right continuous, let p be the smallest such price

for i. Then the best response of i’s competitor, denoted by j, satisfies Sj(p) = Sj(p) on

p ∈ (p, cf ). This is because if there exists ṗ ∈ (p, cf ) such that Sj(ṗ) − Sj(p) > 0, then
Sj(p) = Sj(p) is not a best response and has a profitable deviation since j has capacity

available and ṗ > ch. In the event that this ṗ clears the market, j can benefit from
deviating to produce slightly less at ṗ and causing the market clearing price to increase.
Since ṗ is arbitrary, Sj(p) = Sj(p) is the best-response of Si(p) = Si(p).

Now, if Si(p) = Si(p) on p ∈ (p, cf ) for both i ∈ {1, 2}, then in the event where p
clears the market, either firm can profitably deviate by slightly reducing production and
causing the price to jump up to cf . Hence, it is not optimal to exhaust capacity for
p < cf .
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To see the second assertion, if there exist two prices p < p in the interval (ch, cf ) such
that Si(p) = Si(p) < Ki, we can apply a similar argument as above and conclude that
the best response for j is Sj(p) = Sj(p). W.l.o.g., let p be the sup of all the prices for
which this equality holds. In the case when p+ ϵ is the market clearing price for all small
enough ϵ > 0, increasing the production at the price p is a profitable deviation for at
least one of the players. □

Lemma A.2 In equilibrium, there exists i ∈ {1, 2} such that limp→cf− Si(p) =
∑

τ K
τ
i .

Proof. At least one of the firms exhausts its capacity in the left limit of cf . This
is because fringe firms enter and there will be no market for p > cf . So any remaining
capacity will be produced at cf , that is Si(c

f ) =
∑

τ K
τ
i for both i. If both firms do not

exhaust their capacity in the left limit of cf , then both supply schedules have a discrete
jump at cf . In the event that the market demand is met at cf but D(ϵ) <

∑
i,τ K

τ
i , one of

them can deviate by exhausting its capacity at the price just epsilon below cf to capture
more demand, a profitable deviation. □

Lemma A.3 The production cost for firm 1 at different market-clearing prices satisfies

C1 =

{
clSh

1 (p) iff Sh
1 (p) < Kh

1 ;

clK l
1 + chSh

1 (p) iff Sl
1(p) = K l

1.

Proof. Since Ci is the minimal cost function for producing a given quantity of elec-
tricity, because the marginal cost of hydro production is lower, firm 1 will necessarily first
produce with hydro and only start thermal production when hydro capacity is exhausted.
□

Lemma A.4 For i ∈ {1, 2} the function Si(p) = Sl
i(p) + Sh

i (p) is continuous on the
interval (ch, cf ). It is continuously differentiable except possibly for S2(p) at p for which
S1(p) = K l

1.

Proof. The supply functions are non-decreasing by definition. Hence, a discontinuity
of i’s supply at some price p ∈ (ch, cf ) is, therefore, a discrete jump in i’s production. In
the event that such p clears the market, firm j has a profitable deviation to increase its
production at p − ϵ for any ϵ small enough. Therefore, in equilibrium, the total supply
function of each firm is continuous at every p ∈ (ch, cf ).

By Lemma A.3, it holds except for the case where i = 1 and S1(p) = Sl
1(p) = K l

1,
that for any small enough interval U ⊂ (ch, cf ), there exists τ ∈ {l, h}, such that all p, p′

on that small interval,

Ci(Si(p))− Ci[Si(p) + Sj(p)− Sj(p
′)] = −cτ (Sj(p)− Sj(p

′)) . (A8)

Now consider the case that p ∈ (ch, cf ) clears the market, firm i is maximizing by
producing Si(p) and S1(p)+S2(p) = D(ϵ). Therefore, any p′ on the same interval satisfies

Si(p) · p− Ci(Si(p)) ≥ [D(ϵ)− S−i(p
′)] · p′ − Ci[D(ϵ)− S−i(p

′)],

that is if i deviates its production so that the market clearing price changes to p′, it would
not be a profitable deviation. Therefore with (A8) we have

Si(p) · p− Ci(Si(p)) ≥ [Si(p) + S−i(p)− S−i(p
′)] · p′ − Ci[Si(p) + S−i(p)− S−i(p

′)]

8



⇔
Si(p) · (p− p′) ≥ [S−i(p)− S−i(p

′)] · [p′ − cτ ]

⇔
Si(p)

p′ − cτ
(p− p′) ≥ S−i(p)− S−i(p

′).

Similarly, consider market clearing at p′ gives

Si(p
′)

p− cτ
(p′ − p) ≥ S−i(p

′)− S−i(p).

Therefore, for any p, p′ ∈ U with p− p′ = δ > 0 we have

Si(p)

p′ − cτ
≥ S−i(p)− S−i(p

′)

p− p′
≥ Si(p

′)

p− cτ
.

Since this holds for all δ near 0, by continuity of Si (Lemma A.3) we have

lim sup
δ→0−

S−i(p+ δ)− S−i(p)

δ
≤ Si(p)

p− cτ
≤ lim inf

δ→0+

S−i(p+ δ)− S−i(p)

δ
.

which implies S−i is continuously differentiable on (ch, cf ). The only exception is when
i = 1 and S1(p) = Kh

1 , then Sj(p) = S2(p) is allowed to be non-smooth at p where
S1(p) = Kh

1 . □

Lemma A.5 Using c3, c4 solved in c1 as in (A14), whenever c1 ≥ Kl
1

cf−cl
we have

1. c3(c
f − ch)− c4/(c

f − ch) ≥ c1(c
f − ch) where the equality holds iff c1 =

Kl
1

cf−cl
;

2. c3(c
f − ch) + c4/(c

f − ch) ≥ c1(c
f − cl) where the equality holds iff c1 =

Kl
1

cf−cl
;

3. c3(c
f − ch) − c4/(c

f − ch) and c3(c
f − ch) + c4/(c

f − ch), as functions in c1, are
continuous and strictly increasing to ∞.

Proof. Item 1 : Using the above notations, we have

c3(c
f − ch)− c4/(c

f − ch)− c1(c
f − ch)

=
c1
2

(
1 +

α

α− c1

)
(cf − ch)− (ch − cl)2

2

α− c1
cf − ch

− c1(c
f − ch)

=
c1
2

c1
α− c1

(cf − ch)− (ch − cl)2

2

α− c1
cf − ch

,

which is an increasing function in c1. Its minimum is at c1 =
Kl

1

cf−cl
, for which we have

c1
2

c1
α− c1

(cf − ch)− (ch − cl)2

2

α− c1
cf − ch

=
c1
2
(ch − cl)− (ch − cl)

2

K l
1

cf − cl
= 0.
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Item 3 : The first part of Item 3 is straightforward. To see the second part, we have

c3(c
f − ch) + c4/(c

f − ch) =
c1
2

(
2 +

c1
α− c1

)
(cf − ch) +

(ch − cl)2

2

α− c1
cf − ch

,

Differentiate with respect to c1 gives

cf − ch +
2c1(c

f − ch)

2(α− c1)
+
c21(c

f − ch)

2(α− c1)2
− (ch − cl)2

2(cf − ch)
,

which is increasing in c1. Substitute in c1 =
Kl

1

cf−cl
to obtain its lower bound as

(
cf − ch +

2c1(c
f − ch)

2(α− c1)

)
+

(
Kl

1

cf−cl

)2
(cf − ch)

2(α− c1)2
− (ch − cl)2

2(cf − ch)

=

(
cf − ch +

2c1(c
f − ch)

2(α− c1)

)
+

(
Kl

1

cf−cl

)2
(cf − ch)

2
(

(cf−ch)Kl
1

(ch−cl)(cf−cl)

)2 − (ch − cl)2

2(cf − ch)

=cf − ch +
2c1(c

f − ch)

2(α− c1)
.

To finish the proof for Item 3, it is easy to see as c1 → α, both expressions in Item 3 go
to ∞.

Item 2 : we have that

c3(c
f − ch) + c4/(c

f − ch)− c1(c
f − cl)

=
c1
2

(
2 +

c1
α− c1

)
(cf − ch) +

(ch − cl)2

2

α− c1
cf − ch

− c1(c
f − cl)

=
c1
2

c1
α− c1

(cf − ch) +
(ch − cl)2

2

α− c1
cf − ch

− c1(c
h − cl).

Its derivative is increasing in c1 and hence

2c1(c
f − ch)

2(α− c1)
+
c21(c

f − ch)

2(α− c1)2
− (ch − cl)2

2(cf − ch)
− (ch − cl)

≥c1(c
f − ch)

(α− c1)
− (ch − cl)

=

Kl
1

cf−cl
(cf − ch)(

(cf−ch)Kl
1

(ch−cl)(cf−cl)

) − (ch − cl) = 0.

Therefore c3(c
f − ch) + c4/(c

f − ch)− c1(c
f − cl) is increasing in c1, and its minimum is

at c1 =
Kl

1

cf−cl
which is

c1
2

c1
α− c1

(cf − ch) +
(ch − cl)2

2

α− c1
cf − ch

− c1(c
h − cl)
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=
c1
2
(ch − cl) +

1

2
(ch − cl)

K l
1

cf − cl
−−c1(ch − cl) = 0.

□
Main proof of Proposition A.3 (Existence and Uniqueness)

Proof. From the FOCs in (A5), firm i’s best response to −i is

Si(p) = (p− cτ )S ′
−i(p)

for each firm i = (1, 2). We partition Si(p) in four intervals

1. p < ch,

2. p ∈ [ch, cf ) and Sl
1(p) < K l

1,

3. p ∈ [ch, cf ) and Sl
1(p) = K l

1,
8

4. p ≥ cf .

Because of Lemma A.4, Si(p) must be continuous across these intervals, and thus we
proceed to characterize Si(p) in each interval separately.

1. Interval: p < ch.
To avoid negative profits, firm i does not produce using the τ technology for prices
p s.t. p < cτ , meaning that Sτ

i (p) = 0 at these prices (Lemma A.3). In addition,
since S2(p) = 0 for p < ch, also S1(p) = 0 in this range because Firm 1 has no
incentive to produce as it is the monopolist in this interval and can raise the price
all the way to ch by not producing as in Bertrand competition. Hence, both S1(p)
and S2(p) can exhibit a discrete jump at p = ch. The equilibrium supply functions
in this interval are: {

S1(p) = 0, if p < ch,

S2(p) = 0, if p < ch.
(A9)

2. Interval: p ≥ ch and Sl
1(p) < K l

1.
From the FOCs (A5), Firm 1 solves:

S1(p) = Sl
1(p) = S ′

2(p) · (p− cl),

as Firm 1 will exhaust all its low-cost capacity before moving to the high-cost one
(Lemma A.3). Firm 2’s supply solves:

S2(p) = Sl
1

′
(p) · (p− ch).

Solving these two partial differential equations gives
Sl
1(p) = c2

(p−cl) log(p−ch)+(cl−p) log(p−cl)−cl+ch

(cl−ch)2
+ c1(p− cl),

S2(p) = c2
(p−ch)

(
cl

2
−2clp+chp

(cl−p)(ch−p)
+ cl

p−cl
−log(p−cl)+log(p−ch)

)
(cl−ch)2

+ c1(p− ch),

8The difference between intervals 2. and 3. is whether Firm 1 has exhausted its low-cost supply
because, due to the merit order (Lemma A.3), the supplies of Firm 1 and Firm 2 vary in the two
intervals.
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where c1 and c2 are the two undetermined coefficients. Since the supply functions
has to be strictly increasing by Lemma A.1, we have c2 = 0. Therefore, the supply
schedules in this interval are,{

Sl
1(p) = c1(p− cl)

S2(p) = c1(p− ch)
when p ≥ ch&Sl

1(p) < K l
1, (A10)

where both Sl
1(p) and S2(p) are non-negative and non-decreasing for an undeter-

mined coefficient c1 (we solve for c1 later).

3. Interval: p ≥ ch and Sl
1(p) = K l

1.
Firm 1 exhausted its low-cost technology, so that Sl

1(p) = K l
1 in this interval. Its

total supply curve is

S1(p) = Sl
1(p) + Sh

1 (p) = K l
1 + Sh

1 (p) = S ′
2(p) · (p− ch).

At the same time, Firm 2’s supply solves

S2(p) = Sh
1

′
(p) · (p− ch).

Solving this system of differential equations obtains the following solutions with
undetermined coefficients c3 and c4 (we solve for c3 and c4 later):{

S1(p) = c3
(
p− ch

)
+ c4

1
p−ch

S2(p) = c3
(
p− ch

)
− c4

1
p−ch

when p ≥ ch &Sl
1(p) = K l

1. (A11)

4. Interval : p ≥ cf

Following Lemmas A.1 and A.2 it is optimal to exhaust a firm’s capacity exactly
at p = cf to prevent the entry of fringe firms.{

S1(p) =
∑

τ K
τ
i , if p ≥ cf ,

S2(p) =
∑

τ K
τ
i , if p ≥ cf .

(A12)

We now solve for {c1, c3, c4}. Since there cannot be any discontinuity for p ∈ (ch, cf ),
(A10), (A11), and the boundary condition S1(p̂) = K l

1 yield a system of three equations
in three unknowns {c1, c3, c4} at the price p̂

K l
1 = c1(p̂− cl),

c1(p̂− cl) = c3(p̂− ch) + c4
1

p̂−ch
,

c1(p̂− ch) = c3(p̂− ch)− c4
1

p̂−ch
,

which we can simplify as follows. Subtract the third line from the second line and
rearrange to obtain

p̂ =
2c4

c1(ch − cl)
+ ch. (A13)
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Then, substitute this equation in the first and third line to obtain{
K l

1 = c1(c
h − cl) + 2c4

ch−cl
,

c4
ch−ch

=
c21(c

h−cl)

4(c3−c1)
.

Use c1 to solve for c3 and c4 to get
c4 = (ch−cl)2

2
(α− c1) ,

c3 = c1
2

(
1 + α

α−c1

)
,

p̂− ch = (ch−cl)
c1

(α− c1) ,

(A14)

where we defined α ≡ Kl
1

ch−cl
and the p̂ in the last line is s.t. Si(p) = K l

1.
The solution in (A10) implies c1 > 0, or else the supply function will not be strictly

increasing, violating Lemma A.1. On the other hand, if c1 > α, substitute in p = ch into
(A10) to see that

Sl
1(c

h) = c1(c
h − cl) > K l

1.

This exceeds the capacity, implying when c1 > α, Firm 1 will exhaust its low-cost capacity
at some price strictly less than ch. This contradicts Lemma A.1, since Firm 1 will not
produce with high-cost capacity at prices below ch, and hence its supply function cannot
be strictly increasing.

Consider the values of the (left) limits limp→cf− S1(p) and limp→cf− S2(p) as functions

of c1 ∈ (0, α). For c1 <
Kl

1

cf−cl
, we have from (A13) that

p̂ =
K l

1

c1
+ cl > cf .

With this value of c1, Firm 1 does not exhaust low-cost capacity when p→ cf from below.
In this case both left limits limp→cf− S1(p) and limp→cf− S2(p) are defined by the solution

in (A10). It is clear that both limits are increasing in c1 on the interval (0,
Kl

1

cf−cl
).

For c1 ∈ (
Kl

1

cf−cl
, α), we have p̂ < cf , and Firm 1 exhausts low-cost capacity when

p ≤ cf . In this case both left limits limp→cf− S1(p) and limp→cf− S2(p) are defined using
the solution in (A11). It follows from Lemma A.5 that these left limits are monotonically
increasing for c1 ∈ (0, α).

By Lemma A.2, now the equilibrium can be pinned down by monotonically increasing
c1 ∈ (0, α) until the first c1 that satisfies the boundary condition limp→cf− Si(p) =

∑
τ K

τ
i

is found for some i ∈ {1, 2}. Such an equilibrium always exists due to Lemma A.5.3.
Moreover, any larger c1 will imply that Si exceeds i’s capacity as p→ cf from below due
to the monotonicity. Therefore the equilibrium exists and is unique. □

A.2.2 Proof of Proposition 1 Under Abundance

We break Proposition 1 in two cases. Case “a” refers to abundance and “b” (below)
refers to scarcity.

Proposition 1.a The market price, p, increases in δ under abundance.

Proof. We compute the equilibrium in this case that Firm 2 exhausts its capacity in
equilibrium. From the second equation in (A10), we have that Sl

2(p) = c1 · (p− ch). For
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p→ cf−, Sl
2(p) → Kh

2 , pinpointing c1 =
Kh

2

cf−ch
. Since Firm 1 still has low-cost capacity in

this case, from the first equation in (A10), we have that S1(p) = Sl
1(p) =

Kh
2

cf−ch
· (p− cl).

Hence as p→ cf−, K l
1 >

p−cl

cf−ch

∣∣
p=cf

·Kh
2 = Sl

1(c
f ).9 Given this value for c1 we can compute

c3 and c4 from (A14), thereby constructing Si(p) for i = {1, 2}.
Joining the systems (A9), (A10), and (A12) yields

S1 =


0, when p < ch,

c1(p− cl), when p ∈ [ch, cf ),

K l
1 +Kh

1 , when p = cf ,

and S2 =

{
0, when p < ch,

c1(p− ch), when p ∈ [ch, cf ].

If we locally reduce Kh
2 to Kh

2 −δ and increase Kh
1 to Kh

1 +δ for a small enough δ > 0,

it will still hold that Firm 2 just exhausts its capacity at p → cf and hence c1 =
Kh

2 −δ

cf−ch

still holds. Therefore, c1 decreases and the market-wide production

S1(p) + S2(p) =


0 when p < ch

Kh
2 −δ

cf−ch
(2p− cl − ch) when p ∈ [ch, cf )

K l
1 +Kh

1 +Kh
2 when p = cf

decreases at every price level as δ increases. Hence the market clearing price increases.
□

A.2.3 Proof of Proposition 1 Under Scarcity

We break Proposition 1 in two cases. Case “a” (above) refers to abundance and “b”
refers to scarcity.

Proposition 1.b The market price, p, decreases in δ under scarcity.

Proof. We shall consider the equilibrium that there exists p̂ such that, for p ∈ [p̂, cf ],
Sh
1 (p) > 0 and Sl

1(p) = K l
1 as Firm 1 exhausts its low-cost capacity at p = p̂. In addition,

we will consider the equilibrium that at the same time, Firm 1 also exhausts its high-cost
capacity in the limit as p → cf−. Since we assumed Kh

1 to be small enough, this will be
the (unique) equilibrium of the game.

To see that Kh
1 being small enough is sufficient, we first consider the hypothetical

situation that Firm 2 exhausts its capacity as p→ cf−. From (A11), Firm 2’s production
schedule at p = cf is

S2(c
f ) = c3(c

f − ch)− c4
cf − ch

.

By Lemma A.5, S2(c
f ) is increasing in c1 and so there is a unique c̃1 such that S2(c

f ) =
Kh

2 . Since in this scenario Firm 1 produces also with thermal, and that Sl
1(p) = K l

1 for
some switching price p ≤ cf . At this price K l

1 = Sl
1(p) = c̃1(p − cl), which means that

c̃1 =
Kl

1

p−cl
≥ Kl

1

cf−cl
since cf ≥ p. Denote by

S̃1(c
f ) = c̃3(c

f − ch) +
c̃4

cf − ch
,

where c̃3 and c̃4 are the corresponding coefficients evaluated at c̃1. Since Firm 1 is also

9In the simulations, we pick values for {Kl
1,K

h
2 , c

l, ch, cf} so that Kl
1 > cf−cl

cf−ch
Kh

2 .
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producing with the high-cost technology,

S̃1(c
f )−K l

1 > 0.

Suppose that Kh
1 is small enough so that S̃1(c

f )−K l
1 > Kh

1 , where the left-hand side is
a function of the primitives {Kh

2 , K
l
1, c

h, cl, cf} but not of Kh
1 . Hence, for small enough

Kh
1 , S̃1(c

f ) > K l
1 +Kh

1 as p→ cf−, which is infeasible. Therefore it must be that Firm 1
exhausts capacity as p→ cf− in equilibrium.

Therefore, we must have an alternative coefficient c′1 such that Firm 1 just exhausts
its capacity as p → cf−. Lemma A.5 then implies c′1 < c̃1: Firm 2 has extra capacity in
the limit p→ cf . Because of this lemma, the equilibrium parameter c′1 is uniquely solved
for limp→cf− S1(p) = Kh

1 +K l
1

c3(c
f − ch) +

c4
cf − ch

= Kh
1 +K l

1,

⇐⇒
c′1
2

(
2 +

c′1
α− c′1

)
(cf − ch) +

(ch − cl)2

2

α− c′1
cf − ch

= Kh
1 +K l

1,

where the second line follows from plugging in the coefficients from c3 and c4 from (A14).
There exists a unique c′1, which can be found numerically.10

Joining the systems of equations (A9), (A10), (A11), and (A12) and expliciting c3
and c4 in terms of this c′1, the equilibrium solution is found by :

S1 =


0, if p < ch,

c′1(p− cl), if p ∈ [ch, p̂),
c′1
2

2α−c′1
α−c′1

(p− ch) + (ch−cl)2

2

α−c′1
p−ch

, if p ∈ [p̂, cf ],

and

S2 =


0, if p < ch,

c′1(p− ch), if p ∈ [ch, p̂),
c′1
2

2α−c′1
α−c′1

(p− ch)− (ch−cl)2

2

α−c′1
p−ch

, if p ∈ [p̂, cf ),

Kh
2 if p = cf ,

where p̂ is the price at which Sl
1(p) = K l

1. At this price, due to Lemma A.4
limp→p̂− S2(p) = limp→p̂+ S2(p), and hence p̂ is found by expressing the c3 a and c4 in
the second line of (A11) as a function of c′1 and equating it to the second line of (A10)
as follows:

c′1(p̂− ch) =
c′1
2

2α− c′1
α− c′1

(p̂− ch)− (ch − cl)2

2

α− c′1
p̂− ch

,

c′1

(
1− 2α− c1

α− c1

1

2

)
= −(ch − cl)2

2

α− c′1
(p̂− ch)2

,

10In the simulation, we pick values for {Kl
1,K

h
2 , c

l, ch, cf} so that Kh
2 > cf−ch

cf−cl
Kl

1 and Kl
1 > Kh

2 , which

is feasible as 0 < cf−ch

cf−cl
< 1. To derive this condition, we assume that Kh

2 is large enough so that

Kh
2 > c̃1(p− ch)|p→cf > S2(p)|p→cf = c′1(p− ch)|p→cf , where the second inequality follows from c′1 < c̃1.

Using c̃1 ≥ Kl
1

cf−cl
, it must be that Kh

2 > cf−ch

cf−cl
Kl

1 as p → cf . Since we cannot solve analytically for c′1,
other parameterizations are possible.
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(p̂− ch)2 =

(
α− c′1
c′1

)2

·
(
ch − cl

)2
,

p̂ = ch +
α− c′1
c′1

·
(
ch − cl

)
.

Now if we reduce Kh
2 to Kh

2 − δ and increase Kh
1 by δ > 0 small enough, it will still

hold that Firm 1 just exhausts its capacity at p→ cf . Hence,

c′1
2

(
2 +

c′1
α− c′1

)
(cf − ch) +

(ch − cl)2

2

α− c′1
cf − ch

= Kh
1 +K l

1 + δ.

By Lemma A.5 we have c′1 is increasing in δ. Therefore the market-wide production

S1 + S2 =


0, if p < ch,

c′1(2p− ch − cl), if p ∈ [ch, p̂),

c′1

(
1 + α

α−c′1

)
(p− ch), if p ∈ [p̂, cf ),

Kh
2 +Kh

1 +K l
1, if p = cf ,

is increasing at every price level as δ increases. Hence the market clearing price decreases.
□

A.2.4 Proof of Proposition A.4 (Symmetric Case)

Proof. We start by describing i’s supply. Between the extreme intervals where Si(p) = 0
for p < cl and Si(p) = Kh +K l for p ≥ cf , we have two more intervals. In each of them,
each firm best responds to its competitors according to the FOCs in (A5):

Si(p) = S ′
−i(p) · (p− cτ ) (A15)

Because of the merit order (Lemma A.3), in the interval for p ∈ (ch, p̂) firms compete
using only τ = l, so that cτ = cl. p̂ is the price at which Si(p) = K l. After this price,
firms compete using τ = h, so that cτ = ch.

Let’s first solve the system of equations (A15), for p ∈ [p̂, cf ). The solution is{
S1(p) = c5

p−ch
+ c6 · (p− ch), if p ∈ [p̂, cf ),

S2(p) = − c5
p−ch

+ c6 · (p− ch), if p ∈ [p̂, cf ).
(A16)

Because of symmetry (and the boundary condition), c5 = 0. To pin down c6, note that
the firms exhausts K l +Kh exactly at p = cf . Hence, K l +Kh = c6 · (cf − ch), meaning

that c6 =
Kl+Kh

cf−ch
. We can then determine p̂ as the solution of:

K l = lim
p→p̂+

Si(p),

⇐⇒

K l =
K l +Kh

cf − ch
· (p̂− ch),

K l · (cf − ch) = (K l +Kh) · (p̂− ch),
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p̂ =
chKh + cfK l

K l +Kh

Therefore, the optimal response in this interval is:

Si(p) =
K l +Kh

cf − ch
· (p− ch), if p ∈

[
chKh + cfK l

K l +Kh
, cf

)
. (A17)

Turning to the interval p ∈ [cl, c
hKh+cfKl

Kl+Kh ), a similar system of differential equations

to (A16) holds with cl instead of ch, c7 instead of c6, and c5 = 0. To pin down c7, notice

that Si(p) = K l for p→ chKh+cfKl

Kl+Kh . Therefore,

K l = lim
p→p̂−

Si(p),

⇐⇒

K l = c7 ·
(
chKh + cfK l

K l +Kh
− cl

)
c7 =

K l(K l +Kh)

(ch − cl)Kh + (cf − cl)K l

Therefore, the optimal response in this interval is:

Si(p) =
K l(K l +Kh)

(ch − cl)Kh + (cf − cl)K l
· (p− cl), if p ∈ p ∈

[
cl,
chKh + cfK l

K l +Kh

)
. (A18)

Joining all the intervals, we find that i supplies:

Si(p) =


0 p ∈ [0, cl),

Kl(Kl+Kh)
(ch−cl)Kh+(cf−cl)Kl (p− cl) p ∈ [cl, c

hKh+cfKl

Kl+Kh ),
Kl+Kh

cf−ch
(p− ch), p ∈ [K

hch+Klcf

Kl+Kh , cf ),

K l +Kh, p ∈ [cf ,∞).

Substitute in any numbers 0 ≤ cl < ch < cf and any K l, Kh > 0. The residual
demand is simply

DR
i =

{
D(ϵ)− S−i, p ∈ (0, cf ),

0, p ≥ cf .

Reallocation. We move δ units of high-cost capacity from Firm 2 to Firm 1. The new
supply functions are:

S1(p) =


0, p ∈ [0, cl),

Kl(Kl+Kh−δ)
(ch−cl)(Kh−δ)+(cf−cl)Kl (p− cl), p ∈ [cl, c

h(Kh−δ)+cfKl

Kl+Kh−δ
),

Kl+Kh−δ
cf−ch

(p− ch), p ∈ [ (K
h−δ)ch+Klcf

Kl+Kh−δ
, cf ),

K l +Kh + δ, p ∈ [cf ,∞),
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and

S2(p) =


0, p ∈ [0, cl),

Kl(Kl+Kh−δ)
(ch−cl)(Kh−δ)+(cf−cl)Kl (p− cl), p ∈ [cl, c

h(Kh−δ)+cfKl

Kl+Kh−δ
),

Kl+Kh−δ
cf−ch

(p− ch), p ∈ [ (K
h−δ)ch+Klcf

Kl+Kh−δ
, cf ),

K l +Kh − δ, p ∈ [cf ,∞).

That is, from p ∈ (0, cf ) the two supply schedules are the same as each other, replacing
Kh by Kh − δ in all the formula. When p ≥ cf the supply of firm 1 jump to K l +Kh + δ
but firm 2 remains at K l +Kh − δ.

It is clear that the supplies decrease at every price level when δ increase. This con-
cludes the proof. For completeness, we also specify below the residual demand curves
after the transfer

DR
1 =


D(ϵ)− S−2, p ∈ (0, cf ),

min{D(ϵ)−K l +Kh − δ, 2δ}, p = cf ,

0, p > cf ,

DR
2 =

{
D(ϵ)− S−1, p ∈ (0, cf ),

0, p ≥ cf .

□

A.3 The Marginal Benefit of Holding Water

This section shows that that the marginal benefit of holding water decreases as thermal
capacity increases. We begin by considering the Gross Revenue function at each time t
as GR(wt + δt − wt+1 + qt), in which the quantity wt + δt − wt+1 + qt is the total output
during period t and wt + δt − wt+1 is the hydro output and qt is the thermal output.
Denote by ct and ch the marginal costs for thermal and hydro respectively, then we have
the profit function for each period t

Π(wt + δt − wt+1, qt) := GR(wt + δt − wt+1 + qt)− ctqt − ch(wt + δt − wt+1)

Therefore, the value function for the dynamic optimization problem is given as below

V (w0, K) := Eδ

 max
wt+1(wt+δt,K)
qt(wt+δt,K)

∞∑
t=0

βtΠ(wt + δt − wt+1, qt)

 (A19)

where the maximum is taken over policy functions satisfying wt+1 ∈ [0, wt + δt] and
qt ∈ [0, K] where K is the thermal capacity. In particular, standard arguments shows
that when δt is a Markovian process, the value function satisfies the functional equation

V (w0, K) = Eδ0

 max
w1≤w0+δ0

q0≤K

{Π(w0 + δ0 − w1, q0) + βV (w1, K)}

 (A20)

Proposition 2 If a firm’s revenue function is strictly concave and twice differentiable,

the marginal benefit of holding water decreases in its thermal capacity Ki, i.e.,
∂2Vi(·)
∂wi∂Ki

< 0.
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Proof. Since the gross revenue GR is strictly concave (Appendix Figure A2), it
follows from standard arguments that V (·) is also strictly concave.

Consider formulation (A20) at time t, given δt, wt, the future water stock wt+1 is
determined by FOC:

∂

∂wt+1

Π(wt + δt − wt+1, qt) + βV1(wt+1, K) = 0

which can be equivalently expressed as

−GR′(wt + δt − wt+1 + qt) + ch + βV1(wt+1, K) = 0.

Differentiating this FOC with respect to wt gives

−
(
1− ∂wt+1

∂wt

)
GR′′(wt + δt − wt+1 + qt) +

∂wt+1

∂wt

βV11(wt+1, K) = 0.

Rearranging the equation gives

∂wt+1

∂wt

=
GR′′(wt + δt − wt+1 + qt)

GR′′(wt + δt − wt+1 + qt) + βV11(wt+1, K)

where it follows from concavity of GR and V that ∂wt+1

∂wt
∈ (0, 1).

Now consider formulation (A19). Denote the optimized control variables by wt+1 and
qt for all t. Partially differentiate the value function with respect to K gives

∂

∂K
V (w0, K) = Eδ

[
∞∑
t=0

βt ∂

∂K
Π(wt + δt − wt+1, qt)

]

= Eδ

[
∞∑
t=0

βt
[
GR′(wt + δt − wt+1 + qt)− ct

] ∂qt
∂K

]

= Eδ

[
∞∑
t=0

βt
[
GR′(wt + δt − wt+1 +K)− ct

]
1{qt = K}

]

where the second and third equality follows from the Envelope Theorem and the fact
that K only affects the boundary of qt, and the corner solution satisfies ∂qt

∂K
= 1 and

GR′(wt + δt − wt+1 +K)− ct > 0 when the optimal qt = K.
Therefore, we have

V21(w0, K) =
∂

∂w0

∂

∂K
V (w0, K)

=Eδ

[
∞∑
t=0

βt ∂

∂w0

[
GR′(wt + δt − wt+1 +K)− ct

]
1{qt = K}

]

=Eδ

[
∞∑
t=0

βt

[
∂

∂w0

GR′(wt + δt − wt+1 +K)

]
1{qt = K}

]
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=Eδ

[
∞∑
t=0

βt

[(
t−1∏
i=0

∂wi+1

∂wi

)
∂

∂wt

GR′(wt + δt − wt+1 +K)

]
1{qt = K}

]

=Eδ

[
∞∑
t=0

βt

[(
t−1∏
i=0

∂wi+1

∂wi

)(
1− ∂wt+1

∂wt

)
GR′′

]
1{qt = K}

]

Recall that we have shown ∂wt+1

∂wt
∈ (0, 1) for all t ≥ 0, therefore for all t,(

t−1∏
i=0

∂wi+1

∂wi

)(
1− ∂wt+1

∂wt

)
> 0.

Since GR′′ < 0, it follows that V21 < 0. This completes the proof. □

Figure A2: Concavity of the expected gross revenue function
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B Inflow Forecasts

First, we run the following ARDL model using the weekly inflows of each generator j as
dependent variable,

δj,t = µ0 +
∑
1≤p≤t

αpδj,t−p +
∑
1≤q≤t

βqxj,t−q + ϵj,t ∀j (B1)

We denote by δj,t the inflow to the focal dam in week t. xj,t is a vector that includes the
average maximum temperature and rainfalls in the past week at dam j, and information
about the future probabilities of el niño. We average the data at the weekly level to
reduce the extent of autocorrelation in the error term. Importantly for forecasting, the
model does not include the contemporaneous effect of the explanatory variables.

Forecasting. For forecasting, we first determine the optimal number of lags for P and Q
for each dam j using the BIC criterion. Given the potential space of these two variables,
we set Q = P in (B1) to reduce the computation burden. For an h-ahead week forecast,
we then run the following regression:

δj,t+h = µ̂0 + α̂1δt + · · ·+ α̂P δj,t−P+1 +
K∑
k=1

β̂1,kxj,t,k + · · ·+ β̂q,kxj,t−Q+1,k + ϵt, (B2)

where K denotes the number of control variables in xj,t−q.

Forecasting algorithm. For each week t of time series of dam j, we estimate (B2) for
h ∈ {4, 8, 12, 16, 20} weeks ahead (i.e., for each month up to five months ahead) using
only data for the 104 weeks (2 years) before week t. In the analysis, we only keep dams for
which we have at least 2 years of data to perform the forecast. Dropping this requirement
does not affect the results.

Quality of the fit. Figures B1 and B2 report the autocorrelation function and the Ljung-
box test for the error term ϵt in (B2) for the largest dams in Colombia in the period we
consider. The p-values of Ljung-box test never reject the null of autocorrelation.

Analysis at the firm level. In the structural model, we estimate a transition matrix
by using an ARLD model similar to that in (B1), with the only difference that the
explanatory variables are averaged over months rather than weeks to better capture
heterogeneity across seasons. We also control for early dummies to better account for
long-term time variation like el niño. We present the autocorrelation function and Ljung-
box tests in Appendix Figures B3 and B4. For estimation, we model the error term
ϵj,t in (B1) through a Pearson Type IV distribution as commonly done in the hydrology
literature. This distribution feats our purposes because it is not symmetric, meaning
different probabilities at the tails (dry vs wet seasons). We show that this distribution
fits well the data for the largest four diversified firms (ENDG, EPMG, EPSG, and ISGG)
in Figures B3a, B3b, B3c, and B3d.
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Figure B1: ARDL model diagnostics for some of the largest dams in Colombia in our
sample period
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(d) La Tasajera

Notes: The plot shows the autocorrelation plots for the residuals of the ARDL model used to forecast
future inflows. The title indicates the number of lagged dependent variables and explanatory variables
selected by the algorithm. The test indicates the extent of autocorrelation and heteroskedasticity in the
error terms.
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Figure B2: Ljung boxes for some of the largest dams in Colombia
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(d) La Tasajera

Notes: The plot shows the p-values of Ljung-box tests of whether any of a group of autocorrelations of
a time series are different from zero.
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Figure B3: ARDL model diagnostics at firm level
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Mincer Zarnowitz Regression:
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Mincer Zarnowitz Regression:
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(d) ISGG

Notes: The plot shows the autocorrelation plots for the residuals of the ARDL model used to forecast
future inflows at the firm level. The title indicates the number of lagged dependent variables and
explanatory variables selected by the algorithm. The test indicates the extent of autocorrelation and
heteroskedasticity in the error terms.
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Figure B4: Ljung boxes at the firm level
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(d) ISGG

Notes: The plot shows the p-values of Ljung-box tests of whether any of a group of autocorrelations of
a time series are different from zero.
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Figure B5: Transition matrix for ENDG
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Note: The plots show the quality of the fit of the normal, logistic, and Pearson Type IV distribution to
the error term from the ARDL model.
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Figure B6: Transition matrix for EPMG
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Note: The plots show the quality of the fit of the normal, logistic, and Pearson Type IV distribution to
the error term from the ARDL model.
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Figure B7: Transition matrix for EPSG
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Note: The plots show the quality of the fit of the normal, logistic, and Pearson Type IV distribution to
the error term from the ARDL model.
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Figure B8: Transition matrix for ISGG
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Note: The plots show the quality of the fit of the normal, logistic, and Pearson Type IV distribution to
the error term from the ARDL model.
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C Generators’ Responses to Inflow Forecasts

C.1 Symmetric Responses to Favorable and Adverse Forecasts

The main text focuses on generators’ responses to extreme forecasts. This section shows
consistent results with a less flexible specification that forces firms to respond equally to
favorable and adverse shocks. We employ the following specification:

yij,th =
L∑
l=1

βl ̂inflowij,t+l + xij,t−1,h α + µj,m(t) + τt + τh + εij,th, (B3)

where the sole departure from (1) is that { ̂inflowij,t+l}l is a vector of forecasted inflows l
months ahead. We also allow the slope of j’s lagged water stock to vary across generators
to control for reservoir size across seasons to avoid the mechanical association between
high forecast inflows and large reservoirs.

Zooming in on sibling thermal generators, we define { ̂inflowij,t+l}l as the sum of the
l-forecast inflows accruing to firm i, and by controlling for lagged total water stock by
firms as in Section 3.2.2. In this case, we let the slope of this variable vary across firms.

C.1.1 The Response of Hydropower Generators

The top panel of Figure C1 plots the main coefficient of interest, βl, for inflow forecasts
one, three, and five months ahead. Panel (a) finds that dams are willing to produce
approximately 5 % more per standard deviation increase in inflow forecast. The effect
fades away for later forecasts. Generators respond mostly through quantity bids (black
bars) rather than price bids (gray bars). To show that our predictions indeed capture
variation that is material for firms, Panel (b) performs the same analysis as in (B3) using

the forecast residuals (i.e., inflowij,t+l − ̂inflowij,t+l), instead of the forecast. Reassur-
ingly, we find that bids do not react to “unexpected inflows,” pointing to no additional
information in the forecast residuals.11

C.1.2 The Response of “Sibling” Thermal Generators

The coefficient estimates are in Figure C2. As in Section 3.2.2, sibling thermal generators
respond mostly with their price-bids. The effect is particularly evident in Panel (b),
which runs separate regressions for each monthly forecast in (B3) and shows that current
thermal generators reflect inflow forecasts that are two to four months ahead.

11Some price-bid coefficients are positive in Panel (a). However, this result is rather noisy, as suggested
by the slightly higher response of price bids to the one-month forecast in Panel (b). The rationale is that
generators submit only one price bid per day but multiple quantity bids; thus, there is less variation in
price bids. Controlling for lagged quantities (in logs) in the price-bids regressions (B3) and (1) reported

in Panel (a) of Figure C1, β̂l=1 would collapse to zero. Instead, controlling for lagged price bids in
the quantity-bid regressions would not change the results. The bottom panels plot the estimate from
separate regressions analogous to (B3) to break the extent of autocorrelation across monthly inflows.
Panel (c) shows a smooth decay in quantity bids, while price bids are highly volatile.
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Figure C1: Symmetric hydropower generators’ responses to inflow forecasts

Top Panel. All l-forecasts in the same regressions
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(b) Unexpected inflows (forecast residuals)

Bottom Panel. Separate regressions for each month-ahead forecast
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(c) Expected inflows (standardized forecasts)
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(d) Unexpected inflows (forecast residuals)

Notes: All plots report estimates of {βl}l from (B3) for one, three, and five months ahead using either
price- (gray) or quantity-bids as dependent variables. The bottom panels report coefficients for separate
regressions (one for each month-ahead forecast). Left and right panels use the forecasted inflows or the
forecast errors from the prediction exercise as independent variables, respectively. Error bars (boxes)
report the 95% (90%) CI.

C.1.3 The Response to Competitors’ Inflow Forecasts

We include ̂infolow−i,t+l, the sum of the forecasted inflows of firm i’s competitors l months
ahead, in (B3) and estimate coefficients for both own-forecasts and competitors’ forecasts.
Figure C3 shows the estimated coefficients for competitors’ and own’s forecasts in blue and
green, respectively. Two results emerge. First, generators do not respond to competitors.
We test and do not reject the joint hypothesis that the coefficients pertaining to the
competitors are jointly equal to zero. Second, a dam’s responses to its own forecasts
are quantitatively similar to those in Panel (a) of Figure C1, indicating little correlation
between its own forecasts and competitors’ forecasts.
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Figure C2: Symmetric response of sibling thermal generators
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(a) Single regression
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(b) Separate regressions

Notes: The figure reports estimates of {βl}l from a modified version of (B3) where the focus is on water
inflows accruing to a firm rather than to a generator between one and five months ahead. Since water
inflow forecasts can be correlated over time, Panel (b) plots the estimates from five separate regressions
with each regression focusing on a specific month. Error bars (boxes) report the 95% (90%) CI.

Figure C3: Generators’ response to competitors and own forecasts
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(a) Price bids
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(b) Quantity bids

Notes: The figure reports the estimates from a modified version of (B3) where we include both a genera-
tor’s water forecasted inflow (green) and that of its competitors (blue). Joint test p-values for competitors’
forecasts are 0.6763 for price bids and 0.594 for quantity bids. Error bars (boxes) report the 95% (90%)
CI. Error bars (boxes) report the 95% (90%) CI.

Current water stocks. Intrigued by the fact that generators do not respond to dry
spells accruing to competitors, we extend our analysis to investigate firms’ responses to
other firms. We propose a simple framework where we regress a firm’s hourly quantity-
and price-bids (in logs) on a firm’s current water stock, the water stock of its competitors,
and the interaction of these two variables. As before, we average variables across weeks.
We account for unobserved heterogeneity at the level of a generator or the macro level
(e.g., demand) using fixed effects by generators, week-by-year, and market hours. Table
C2 finds that firms only respond to their own water stocks: not only the response to
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competitors is not statistically significant, but also its magnitude is shadowed by that
observed for own water stocks. In addition, the interaction term is small and insignificant,
indicating that firms do not strategize based on their potential competitive advantage.12

Table C1: Firm response to competitors’ water stock, two-by-two matrices

(1) (2) (3) (4) (5) (6) (7) (8)
Quantity-bids (ln) Price-bids (ln)

Panel a. Controlling for a Competitors’ Water Stocks
Low water stock for i –0.166 –0.160 0.004 0.004

(0.101) (0.092) (0.085) (0.086)
Low water stock for i’s comp. –0.044 0.043 0.003 0.004

(0.085) (0.068) (0.055) (0.079)
High water stock for i 0.062∗∗ 0.048 –0.089 –0.077

(0.021) (0.028) (0.061) (0.068)
High water stock for i’s comp. –0.096 –0.061 0.105 0.050

(0.055) (0.071) (0.092) (0.115)

N 135,048 135,048 135,048 135,048 135,048 135,048 135,048 135,048
Adjusted R-squared 0.7874 0.7850 0.7877 0.7850 0.6316 0.6323 0.6319 0.6324

Panel b. Responding to Competitors’ Water Stocks
Low water stock for i –0.196 –0.167 –0.047 0.006

(0.133) (0.095) (0.107) (0.096)
Low water stock for i’s comp. –0.069 0.042 –0.041 0.015

(0.103) (0.066) (0.025) (0.077)
Low water stock for i × Low water stock for i’s comp. 0.090 0.155

(0.114) (0.122)
High water stock for i’s comp. –0.102 –0.061 0.107 0.072

(0.054) (0.089) (0.094) (0.109)
Low water stock for i × High water stock for i’s comp. 0.130 –0.048

(0.092) (0.195)
High water stock for i 0.060∗ 0.047 –0.073 –0.054

(0.025) (0.048) (0.055) (0.064)
High water stock for i × Low water stock for i’s comp. 0.028 –0.249

(0.051) (0.235)
High water stock for i × High water stock for i’s comp. 0.003 –0.066

(0.077) (0.044)

N 135,048 135,048 135,048 135,048 135,048 135,048 135,048 135,048
Adjusted R-squared 0.7876 0.7877 0.7850 0.7850 0.6321 0.6319 0.6327 0.6324

FE: Generator, week-by-year, and hour ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Clustered s.e., generator, month, and year ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

* – p < 0.1; ** – p < 0.05; *** – p < 0.01

Notes: The top panel presents the coefficient estimates from the following regression

ln bidijht = α0 + βi1it + β−i1−it + β2δijt + FEjht + εijht,

where t indices weeks, so that price- and quantity-bids are averaged across weeks for each hour. The
definition of 1it varies across “Low water stocks,” when it takes the value of one if the sum of the water
stocks of firm i in week t is below its 20th percentile, or “High water stocks,” when the sum is above
its 80th percentile. 1−it is defined analogously for firm i’s competitors. Panel b also includes 1it · 1−it

as a regressor, namely the interaction between a firm’s current status (whether i’s water stock is above
or below a certain threshold and that of its average competitor). All regression control for a generator’s
current inflow (δijt, unreported), and generator, week-by-year, and hour-fixed effects.

12We also perform a “two-by-two exercise” where we study, for instance, a generator’s bids when its
current water stock is high but its competitors’ water stock is low. Panel a of Table C1 shows that
generators react only to their own water stock, disregarding others. Panel b interacts these two variables
but finds that the interactions are mostly insignificant and small. Thus, competitors’ water stocks hardly
explain bids.
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Table C2: Firm response to competitors’ water stock

(1) (2) (3) (4) (5) (6)
Quantity-bids (ln) Price-bids (ln)

Ln competitors’ water stock (std) –0.106∗ 0.169 0.225 0.250 0.368 0.522
(0.042) (0.087) (0.126) (0.194) (0.275) (0.312)

Ln firm i’s water stock (std) 0.537∗∗ 0.584∗∗ 0.231 0.359∗

(0.179) (0.191) (0.185) (0.148)
Ln competitors’ water stock (std) × Ln firm i’s water stock (std) –0.029 –0.079

(0.030) (0.061)
Constant 5.778∗∗∗ 5.778∗∗∗ 5.762∗∗∗ 11.716∗∗∗ 11.716∗∗∗ 11.670∗∗∗

(0.001) (0.009) (0.016) (0.000) (0.008) (0.038)
FE: Generator, week-by-year, and hour ✓ ✓ ✓ ✓ ✓ ✓

Clustered s.e. by generator, month, and year ✓ ✓ ✓ ✓ ✓ ✓
N 135,048 135,048 135,048 135,048 135,048 135,048
Adjusted R-squared 0.7776 0.7856 0.7858 0.6246 0.6259 0.6277

* – p < 0.1; ** – p < 0.05; *** – p < 0.01

Notes: This table presents the coefficient estimates from the following regression

ln bidijht = α0 + βi lnwit + β−i lnw−it + βint lnwit · lnw−it + FEjht + εijht,

where t indices weeks, so that price- and quantity-bids are averaged across weeks for each hour. wit

and w−it are the average weekly water stocks of firm i and firm i’s competitors in week t. Continuous
variables are standardized.

C.2 Robustness

Figure C4: Hydropower generators’ responses to inflow forecasts over 1, 2, and 3 months
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(b) Quantity bids

Notes: The figure studies how hydropower generators respond to favorable or adverse future water
forecasts according to (1). Each plot reports estimates of {βlow

l } in red and {βhigh
l } in blue for one,

three, and five months ahead. Error bars (boxes) report the 95% (90%) CI.
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Figure C5: Hydropower generators’ responses to inflow forecasts - separate regressions
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Notes: The figure studies how hydropower generators respond to favorable or adverse future water
forecasts by running (1) five times – i.e., in each regression, we keep only one pair of adverse and
favorable variable for each one of the five monthly forecasts reported in the figure. Each plot reports
estimates of {βlow

l } in red and {βhigh
l } in blue for one, three, and five months ahead. Error bars (boxes)

report the 95% (90%) CI.

Figure C6: Sibling thermal generators’ responses over 1, 2, and 3 months
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Notes: The figure studies how sibling thermal generators respond to favorable or adverse future water
forecasts according to (1). Each plot reports estimates of {βlow

l } in red and {βhigh
l } in blue for one,

three, and five months ahead. Error bars (boxes) report the 95% (90%) CI.

35



Figure C7: Hydro generator’s responses to competitors’ forecasts over 1, 2, and 3 months
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Notes: The figure studies how generators respond to favorable or adverse future water forecasts accruing
to competitors according to (1). Error bars (boxes) report the 95% (90%) CI. Joint tests for {βlow

l }3l=1

and {βhigh
l }3l=1 reject the null hypothesis that these coefficients are zero.
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D Exhibits from the Structural Model

Figure D1: Relationship between prices and business stealing
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(a) Scarcity periods
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(b) Abundant periods

Notes: The figure presents binned scatter plots (100 bins per firm) of the market prices (y-axis) for

different levels of business stealing (x-axis). To avoid dividing by zero when DR
i
′
= 0, we let the x-

axis be S′
iht(p)/(S

′
iht(p) + S′

−iht(p)). The denominator is the sum of S′
iht(p) + S′

−iht(p) instead of just

S′
−iht(p) = DR

iht

′
(p) as in (5) to account for DR

iht

′
(p) ≃ 0 without truncating the data. Only diversified

firms with a dam are considered. The black line fits the data through a spline (the 95% CI is in gray).
Panel (a) focuses on markets where firm i has less than the 30th percentile of its long-run water stock.
Panel (b) focuses on periods where it has more than the 70th percentile.
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Table D1: Estimated primitives – four spline parameters

(1) (2) (3) (4)

Marginal costs (COP/MWh)
Thermal (ψthermal) 204460.10∗∗∗ 151965.08∗∗∗ 213177.19∗∗∗ 149699.10∗∗∗

(1,880.65) (1,840.22) (1,626.95) (1,624.97)
Hydropower (ψhydro) 76,022.12∗∗∗ 28,820.29∗∗∗ 44,941.37∗∗∗ 51,297.15∗∗∗

(6,601.03) (6,290.74) (3,368.43) (4,638.29)
Intertemporal value of water (COP/MWh)

Spline 1 (γ1) –2,216.01∗∗∗ 6,992.47∗∗∗ 2,297.60∗∗∗ 10,797.46∗∗∗

(710.63) (524.16) (372.92) (474.35)
Spline 2 (γ2) –2.773e-03∗∗∗ –2.668e-03∗∗∗ –3.672e-03∗∗∗ –3.576e-03∗∗∗

(2.612e-04) (1.550e-04) (1.398e-04) (1.402e-04)
Spline 3 (γ3) 5.359e-09∗∗∗ 1.386e-08∗∗∗ 5.512e-09∗∗∗ 1.382e-08∗∗∗

(6.862e-10) (6.043e-10) (4.654e-10) (5.307e-10)
Spline 4 (γ4) 2.364e-08∗∗∗ –1.893e-08∗∗∗ 1.220e-08∗∗∗ –1.996e-08∗∗∗

(2.347e-09) (1.773e-09) (1.382e-09) (1.536e-09)
Fixed Effects

Firm ✓ ✓ ✓ ✓
Generator ✓
Month-by-technology ✓ ✓
Hour ✓ ✓ ✓ ✓
Week-by-year ✓ ✓
Date ✓ ✓

Clustered s.e. Generator Generator Generator Generator
SW F (ψthermal) 32.93 842.34 30.56 129.27
SW F (ψthermal) 2,314.39 760.89 3,458.28 700.41
SW F (ψhydro) 425.23 245.77 866.70 333.94
SW F (γ1) 318.26 242.54 392.31 269.99
SW F (γ2) 244.94 275.53 366.43 323.50
SW F (γ3) 623.17 484.66 519.66 491.27
SW F (γ4) 394.17 448.36 445.26 446.16
Anderson Rubin F 1,213.31 1,395.05 1,527.77 1,539.08
N 1,451,592 1,451,592 1,451,592 1,451,592

* – p < 0.1; ** – p < 0.05; *** – p < 0.01

Notes: This table presents the coefficients obtained estimating (12) by two-stage least squares on daily
data between January 1, 2010, and December 31, 2015. Unlike the results presented in the main text
(Table 2), these estimates are based on an approximation of the value function over four knots instead
of five, meaning that we estimate only four {γ}4r=1. The top panels separate the marginal cost estimates
and the value function parameters from the fixed effects used in estimation, which vary across columns.
Our favorite specification is in Column (4), which includes day-fixed effects. The bottom panel provides
diagnostic tests in the first stage. 2,900 COP ≃ 1 US$
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Table D2: Estimated primitives – employing a normal density for the transition matrix

(1) (2) (3) (4)

Marginal costs (COP/MWh)
Thermal (ψthermal) 204727.14∗∗∗ 143319.87∗∗∗ 220441.60∗∗∗ 146635.86∗∗∗

(1,803.36) (1,843.71) (1,644.41) (1,529.32)
Hydropower (ψhydro) 46,491.28∗∗∗ 28,163.59∗∗∗ 28,458.10∗∗∗ 60,353.00∗∗∗

(7,097.17) (5,026.09) (3,774.68) (3,616.79)
Intertemporal value of water (COP/MWh)

Spline 1 (γ1) –797.45 –6,751.10∗∗∗ –9,712.11∗∗∗ –3,744.90∗∗∗

(1,018.26) (504.77) (526.92) (364.28)
Spline 2 (γ2) –3.346e-03∗∗∗ –3.154e-04∗∗ –2.173e-04 –1.064e-03∗∗∗

(3.548e-04) (1.421e-04) (1.806e-04) (1.016e-04)
Spline 3 (γ3) –4.894e-09∗∗∗ 2.009e-08∗∗∗ –1.621e-08∗∗∗ 1.837e-08∗∗∗

(1.497e-09) (1.055e-09) (1.093e-09) (8.171e-10)
Spline 4 (γ4) 4.070e-08∗∗∗ –3.179e-08∗∗∗ 4.205e-08∗∗∗ –2.848e-08∗∗∗

(2.795e-09) (1.931e-09) (1.926e-09) (1.508e-09)
Spline 5 (γ5) –2.216e-08∗∗∗ 8.949e-08∗∗∗ 4.422e-08∗∗∗ 8.251e-08∗∗∗

(3.405e-09) (2.893e-09) (2.274e-09) (2.500e-09)
Fixed Effects

Firm ✓ ✓ ✓ ✓
Generator ✓ ✓ ✓ ✓
Month-by-technology ✓ ✓
Hour ✓ ✓ ✓ ✓
Week-by-year ✓ ✓
FE: Date ✓ ✓

SW F (ψthermal) 3,129.14 1,257.31 2,991.60 1,097.29
SW F (ψhydro) 443.62 272.74 883.91 367.55
SW F (ψγ1) 251.73 213.67 285.62 225.96
SW F (ψγ2) 219.64 273.32 270.25 300.83
SW F (ψγ3) 441.27 476.05 297.84 482.88
SW F (ψγ4) 522.38 550.59 296.71 553.52
SW F (ψγ5) 403.80 1,255.92 485.36 1,018.15
Anderson Rubin F 1,213.31 1,395.05 1,527.77 1,539.08
KP Wald 156.38 156.56 139.15 159.40
N 1,451,592 1,451,592 1,451,592 1,451,592

* – p < 0.1; ** – p < 0.05; *** – p < 0.01

Notes: This table presents the coefficients obtained estimating (12) by two-stage least squares on daily
data between January 1, 2010, and December 31, 2015. Unlike the results presented in the main text
(Table 2), these estimates assume that the transition matrix is normally distributed. The top panels
separate the marginal cost estimates and the value function parameters from the fixed effects used in
estimation, which vary across columns. Our favorite specification is in Column (4), which includes
day-fixed effects. The bottom panel provides diagnostic tests in the first stage. 2,900 COP ≃ 1 US$
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Table D3: Estimated primitives – employing a normal density for the transition matrix

(1) (2) (3) (4)

Marginal costs (COP/MWh)
Thermal (ψthermal) 195271.35∗∗∗ 152621.02∗∗∗ 194831.41∗∗∗ 151112.79∗∗∗

(1,605.71) (1,807.59) (1,229.58) (1,573.39)
Hydropower (ψhydro) 120408.48∗∗∗ 32,919.28∗∗∗ 128840.47∗∗∗ 59,085.78∗∗∗

(1,313.47) (5,997.03) (871.55) (4,459.66)
Intertemporal value of water (COP/MWh)

Spline 1 (γ1) –2,720.98∗∗∗ 6,297.20∗∗∗ 1,569.04∗∗∗ 10,291.14∗∗∗

(635.73) (515.56) (329.00) (461.14)
Spline 2 (γ2) –2.752e-03∗∗∗ –2.829e-03∗∗∗ –3.485e-03∗∗∗ –3.836e-03∗∗∗

(2.242e-04) (1.588e-04) (1.235e-04) (1.425e-04)
Spline 3 (γ3) 7.278e-09∗∗∗ 1.527e-08∗∗∗ 1.025e-08∗∗∗ 1.538e-08∗∗∗

(7.491e-10) (6.213e-10) (4.369e-10) (5.414e-10)
Spline 4 (γ4) 1.844e-08∗∗∗ –2.010e-08∗∗∗ –4.491e-09∗∗∗ –2.165e-08∗∗∗

(2.351e-09) (1.804e-09) (1.222e-09) (1.550e-09)
Fixed Effects

FE: Firm ✓ ✓ ✓ ✓
FE: Generator ✓ ✓
FE: Month-by-technology ✓ ✓
FE: Hour ✓ ✓ ✓ ✓
FE: Week-by-year ✓ ✓
FE: Date ✓ ✓

Clustered s.e. Generator Generator Generator Generator
SW F (ψthermal) 36.41 113.62 34.13 94.59
SW F (ψhydro) 124.43 300.57 139.18 2,474.37
SW F (γ1) 616.23 652.90 483.22 617.59
SW F (γ2) 1,401.71 364.00 194.38 284.03
SW F (γ3) 76.56 93.11 644.24 248.55
SW F (γ4) 45.66 86.99 1,139.58 82.71
Anderson Rubin F 19.74 111.61 196.42 106.90
KP Wald 7.16 10.80 6.61 19.28
Overid. p-value 0.19 0.21 0.11 0.14
N 1,451,592 1,451,592 1,451,592 1,451,592

* – p < 0.1; ** – p < 0.05; *** – p < 0.01

Notes: This table presents the coefficients obtained estimating (12) by two-stage least squares on daily
data between January 1, 2010, and December 31, 2015. Unlike the results presented in the main text
(Table 2), these estimates assume that the transition matrix is normally distributed and are based on an
approximation of the value function over four knots instead of five, meaning that we estimate only four
{γ}4r=1. The top panels separate the marginal cost estimates and the value function parameters from
the fixed effects used in estimation, which vary across columns. Our favorite specification is in Column
(4), which includes day-fixed effects. The bottom panel provides diagnostic tests in the first stage. 2,900
COP ≃ 1 US$
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E Smoothing Variables

This section details the smoothing approach that allows interchanging differentiation
and expectation after taking the first-order conditions of the value function (9) – that is,
∂
∫
ϵ V (w,p(ϵ))fϵ(ϵ)dϵ

∂p
=
∫
ϵ
∂V (w,p(ϵ))

∂p
fϵ(ϵ)dϵ – simplifying the interpretation and identification in

Section 5. The smoothing procedure replaces indicators in supply and demand variables
with their smoothed version.

Residual demand of firm i. Following the notation in Section 5, the residual demand
to firm i is D̃R

iht(p, ϵ) = Dht(ϵ)− S̃−iht(p), where the notation x̃ means that variable x is
smoothed.13 Smoothing the residual demand follows from smoothing the supply of the

competitors of firm i, S̃−iht(p) =
∑N

m ̸=i

∑Jm
j=1 qmjhtK

(
p−bmjt

bw

)
, where Jm is the number

of generation units owned by firm m. Let K(·) denote the smoothing kernel, which we
choose to be the standard normal distribution in the estimation (Wolak, 2007). We follow
Ryan (2021) and set bw equal to 10% of the expected price in MWh. The derivative of
DR

iht(p, ϵ) with respect to the market price in hour h and day t is

∂D̃R
iht(p, ϵ)

∂pht
= −

N∑
m ̸=i

Km∑
k=1

qmkht

∂K
(
p−bmkt

bw

)
∂pht

.

Supply of firm i. The supply of firm i becomes, S̃iht(pht) =
∑Ji

j=1 qijhtK
(

p−bijt
bw

)
, leading

to the following smoothed derivatives,

∂S̃iht

∂pht
=

Ji∑
j=1

qijht
∂K
(
p−bmkt

bw

)
∂pht

,
∂S̃iht

∂qijht
= K

(p− bijt
bw

)
,
∂S̃iht

∂bijt
= −qijht

∂K
(p−bijt

bw

)
∂bijt

.

The derivatives of the smoothed supply functions by technology τ are found analogously:

∂S̃τ
iht

∂pht
=
∑
k∈τ

qikht
∂K
(
p−bikt
bw

)
∂pht

,

∂S̃τ
iht

∂qijht
=

{
K
(

p−bijt
bw

)
if j has technology τ,

0 otherwise,

∂S̃τ
iht

∂bijt
=

−qijht
∂K
(

p−bijt
bw

)
∂bijt

if j has technology τ,

0 otherwise.

Market price. The derivatives of the market price with respect to price- and quantity-
bids in (9) are computed using the envelop theorem. Their smoothed versions are

∂pht
∂bijt

=

∂S̃iht

∂bijt

∂D̃R
iht

∂pht
− ∂S̃iht

∂pht

,
∂pht
∂qijht

=

∂S̃iht

∂qijht

∂D̃R
iht

∂pht
− ∂S̃iht

∂pht

.

13We drop the tilde in the main text for smoothed variables to simplify the notation.
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F Model Fit

Table F1: Hourly prices across simulations

(1) (2) (3) (4) (5) (6) (7) (8)
Hour Avg.Prices Avg.Sim Prices Avg.Price Dif Avg.Price Dif Hour Avg. Prices Avg.Sim Prices Avg.Price Dif Avg.Price Dif

Cop MWh Cop MWh Cop MWh Cop MWh% Cop MWh Cop MWh Cop MWh Cop MWh%

10 steps for all variables
0 161,252.60 135,273.40 -25,979.24 -6.26 12 195,531.40 163,482.30 -32,049.12 -11.77
1 156,664.90 130,628.70 -26,036.24 -6.95 13 194,709.30 163,511.20 -31,198.11 -11.86
2 152,892.30 128,465.70 -24,426.53 -6.08 14 196,454.30 164,380.80 -32,073.58 -12.15
3 151,443.70 128,594.40 -22,849.36 -6.03 15 194,546.70 162,841.40 -31,705.25 -12.01
4 154,896.60 129,640.90 -25,255.72 -7.31 16 191,133.60 160,444.40 -30,689.27 -11.30
5 163,513.80 135,057.40 -28,456.36 -8.86 17 189,147.60 159,043.90 -30,103.68 -10.45
6 165,598.20 136,721.60 -28,876.58 -9.43 18 211,991.70 177,970.30 -34,021.39 -13.46
7 174,317.70 142,618.10 -31,699.63 -10.85 19 225,075.80 185,115.50 -39,960.33 -15.82
8 183,744.00 151,396.80 -32,347.23 -11.71 20 207,064.00 173,728.10 -33,335.85 -12.43
9 188,755.90 155,528.70 -33,227.22 -12.04 21 194,239.10 162,719.60 -31,519.55 -11.23
10 194,980.90 162,327.90 -32,652.96 -12.38 22 181,601.30 151,125.00 -30,476.31 -9.83
11 200,586.40 166,731.60 -33,854.77 -13.54 23 170,168.10 139,515.30 -30,652.76 -10.08

30 steps for residual demand and value function, 10 steps for supply schedules
0 161,252.60 138,807.00 -22,445.62 -5.30 12 195,531.40 164,607.50 -30,923.88 -9.30
1 156,664.90 133,723.50 -22,941.38 -5.33 13 194,709.30 164,046.20 -30,663.15 -9.26
2 152,892.30 132,266.60 -20,625.70 -3.92 14 196,454.30 165,683.90 -30,770.43 -9.46
3 151,443.70 132,024.60 -19,419.11 -4.10 15 194,546.70 163,824.30 -30,722.39 -9.47
4 154,896.60 133,081.20 -21,815.40 -5.82 16 191,133.60 161,973.50 -29,160.14 -9.27
5 163,513.80 138,363.60 -25,150.15 -7.21 17 189,147.60 160,533.10 -28,614.54 -8.59
6 165,598.20 141,354.20 -24,243.99 -7.42 18 211,991.70 180,689.50 -31,302.22 -11.04
7 174,317.70 147,567.70 -26,750.04 -8.10 19 225,075.80 187,535.60 -37,540.19 -14.00
8 183,744.00 153,035.40 -30,708.67 -10.45 20 207,064.00 175,701.60 -31,362.38 -10.01
9 188,755.90 157,682.30 -31,073.58 -9.70 21 194,239.10 162,380.70 -31,858.44 -10.22
10 194,980.90 163,022.50 -31,958.37 -10.36 22 181,601.30 152,607.30 -28,993.96 -7.55
11 200,586.40 167,918.50 -32,667.87 -11.56 23 170,168.10 144,076.90 -26,091.15 -7.36

Notes: The table compares average hourly prices across the simulated and actual data. The simulation
model is described in Section 6.2. The simulations in this table employ a different number of steps in
the first and second panels. 2,900 COP ≃ 1 US$.
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Figure F1: EPMG’s total installed capacity by technology

(a) EPMG’s installed capacity over time
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(b) Thermal capacity as a percentage of EPMG’s thermal and hydro capacity
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Note: The relative contribution of different technologies to EPMG’s installed capacity over time.
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Figure F2: Monthly average inverse semi-elasticities by firm
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Notes: The mean inverse elasticity for the six firms with hydro units and the average across all firms with
no hydro generators (orange). The semi-elasticity is equal to the COP/MWh increase in the market-
clearing price that would result from a supplier reducing the amount of energy it sells in the short-term
market during hour h by one percent. 2,900 COP ≃ 1US$.

Figure F3: Model fit (30 steps for residual demand and value function
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Note: The figure compares the average price over a week’s hourly markets with the market prices
obtained from solving EMPG’s profit maximization problem (13) for each hourly market. The solver
employs thirty steps to discretize the demand and the value function and 10 steps for each technology-
specific supply (M = Z = 30, K = 10). 2,900 COP ≃ 1 US$.
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G Counterfactual Analyses: Tables and Figures

Figure G1: Price changes of capacity transfer to the leading firm - small transfers

Top panel: the distribution of the leader’s water inflows is on the x-axis
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(a) Transferring κ% from all fringe firms
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(b) Transferring κ% from all firms

Bottom panel: the distribution of the leader’s water stock is on the x-axis
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(c) Transferring κ% from all fringe firms
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(d) Transferring κ% from all firms

Notes: The figure presents the results from the counterfactual exercises discussed comparing observed
prices with counterfactual market prices as we endow the market leading firm with a fraction of its
competitors’ thermal capacities (y-axis) for varying levels of scarcity (x-axis). Top (bottom) panels
proxy scarcity by grouping markets based on the deciles of the firm’s water inflow (water stock): each
cell reports the average price difference between the simulated market and the status quo with different
shades of red and blue colors based on the sign and magnitude. The left (right) panels move capacity
from fringe (all) firms. Unlike the plots in Figure 11, these plots cap transfer fractions to 50%. The
average market price is approximately 150,000 COP/MWh. 2,900 COP ≃ 1 US$.
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Figure G2: Percentage price changes due to a capacity transfer to the leading firm

Top panel: the distribution of the leader’s water inflows is on the x-axis
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(b) Transferring κ% from all firms

Bottom panel: the distribution of the leader’s water stock is on the x-axis
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(c) Transferring κ% from all fringe firms
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(d) Transferring κ% from all firms

Notes: The figure presents the results from the counterfactual exercises discussed comparing observed
prices with counterfactual market prices as we endow the market leading firm with a fraction of its
competitors’ thermal capacities (y-axis) for varying levels of scarcity (x-axis). Top (bottom) panels
proxy scarcity by grouping markets based on the deciles of the firm’s water inflow (water stock): each
cell reports the average difference between the simulated market and the status quo with different shades
of red and blue colors based on the sign and magnitude. The left (right) panels move capacity from
fringe (all) firms. Unlike the plots in Figure 11, which compares absolute price differences, this analysis
compares percentage price differences by dividing each price difference by the baseline simulated market
price (κ% = 0).
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