
Proportional Treatment Effects in Staggered

Settings: An Approach for Poisson.∗

Ninon Moreau-Kastler†

January 22, 2025

Abstract

I propose an approach tomeasure proportional treatment effects formultiplicative difference-

in-differencesmodels. TWFE (two-wayfixed effect) linear estimators donot recover difference-

in-differences estimates in the presence of staggered treatment. I show that this issue extends

to Poisson-Pseudo Maximum Likelihood estimators. In the linear case, robust estimators ex-

ist to recover correct DiD estimates, but these approaches do not extend to PPML, as aggrega-

tion is challenging in the non-linear case. This paper develops an estimator robust to TWFE

staggered bias for PPML, which recovers a quantity with a similar interpretation as in the

canonical 2-by-2 model: the Ratio-of-Ratios.

∗I thank Kirill Borusyak, Peter Egger, Martin Mugnier, Farid Toubal and Morgan Ubeda for helpful comments

and advices.
†EU Tax Observatory, Paris School of Economics.



1 Introduction

Applied economists are often interested in studying variables which take only positive values

and are non-normally distributed. Such outcomes can be trade flows, sales or employment for

example. Public policies or economic shocks generate changes in these outcomes in magnitudes

that will often vary across small or large countries, firms or sectors. In such cases, researchers

are interested in proportional treatment effects, or semi-elasticities: the change in the outcome

in percentage generated by the treatment. Common practice among empirical researchers has

been to use log transformations of the outcome, mixed with a linear two-way fixed effect model

when selection into treatment is non-random: a method I refer to as TWFE log-OLS.

The TWFE PPML estimator presents several advantages over TWFE log-OLS. It can include

observations with zero in the outcome, and can easily estimate high-dimensional fixed effects

models. It is not biased in settings where the treatment changes the level of the outcome and the

variance of the error term, contrary to log-OLS. In settings where treatment effects are heteroge-

neous across units, TWFE log-OLS and TWFE PPML recover different quantities of interest and

imply different parallel trends. The TWFE PPML estimator targets the percentage change in the

outcome, and relies on the assumption that the growth rate in the outcome of the two groups

should have been the same without treatment.1

On the other hand, in the presence of treatment heterogeneity and staggered treatment, em-

pirical researchers have been recently concerned that two-way fixed effects estimators do not

recover desired aggregate difference-in-differences quantity of interest. The estimator recovers

"forbiden comparisons" and weights negatively some treatment effects, potentially yielding es-

timates of the wrong sign.2 In this paper, I show that the same issue plagues the TWFE PPML

estimator. Using a simple example with two indivuals treated at different times, I show that the

estimated quantity differs significantly from the estimation target when there are heterogeneous

treatment effects by time and individuals.

Robust estimators have been developed in the linear case, recovering correct DiD estimates

for cohort and time cells and aggregating them correctly (Callaway and Sant’Anna, 2021; Sun

and Abraham, 2021; Wooldridge, 2021). They are challenging for non-linear estimators such as

PPML: they rest on averaging correct linear treatment effects, which cannot be extended to non-
1TWFE log-OLS captures changes in the average treatment parameter.
2See De Chaisemartin and D’Haultfoeuille (2023) for a review of this literature.
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linear treatment effects. In particular, the multiplicative difference-in-differences model from

PPML targets the proportional change in the average, which cannot be recovered by a weighted

sum of proportional changes on cohorts g at time t:
∑
i,t

νg,t

E[yi(g,t)(1)|D = 1] − E[yi(g,t)(0)|D = 1]
E[yi(g,t)(0)|D = 1] ̸= E[yit(1)|D = 1] − E[yit(0)|D = 1]

E[yit(0)|D = 1] (1)

This paper develops an estimatorwhich recovers a proportional treatment effect (semi-elasticity),

corresponding to the correct mutiplicative difference-in-differences (ratio-of-ratios), even when

treatment is staggered and its effect heterogeneous. This estimator rests on the idea that by anal-

ogy with the linear case, the TWFE PPML estimator recovers the ratio-of-ratios in the canonical

2 times and 2 groups setting (Ciani and Fisher, 2019).

Using a parallel trend in growth rates, a counterfactual outcome can be estimated by multi-

plying the pre-treatment outcome of the treated group by the growth rate of the control group’s

outcome. The estimator then recovers a correct average treatment effect in level, scaled by the

counterfactual average outcome of the treated group. The estimated quantity corresponds to the

growth rate of the average outcome caused by the treatment, or treatment effect semi-elasticity,

which is exactly the quantity estimated by TWFE PPML in the canonical setting. I show that

this estimator can be computed using either a fully saturated model or an imputation estimator

(Wooldridge, 2023; Borusyak et al., 2024).

This paper closely relates to two other attempts to reconcile staggered setting best pratices

in the non linear case. Wooldridge (2023) extend the idea that allowing for all margins of treat-

ment heterogeneity allows the TWFE estimator to recover the correct treatment effect estimates,

even for nonlinear difference-in-differences. He further provides evidence that a fully saturated

model is equivalent to an imputation estimator, and that it allows to easily estimate treatment ef-

fects for non-linear models. However, his proposed estimator does not allow to recover a higher

level proportional treatment effect than for cohort-time cells. In this paper, I clearly state the

quantity of interest of the canonical set-up, and provides a realiable methodology to recover

this quantity in the staggered setting, using some results from Wooldridge (2023). My esti-

mator is suited to recover a proportional treatment effect (semi-elmasticity) at any aggregation

scale. I also show that the TWFE PPML estimator is biased in the staggered case, with some

treatment effect contributing negatively to the estimate.

Nagengast and Yotov (2023) apply Wooldridge (2023)’s fully saturated model to estimate

tariff trade creation effects in the gravity setting. They propose a quantity aggregating propor-
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tional individual treatment effects from this model interpretable as a proportional treatment

effects. In a setting were treatment effect are small, and treatment heterogeneity occurs only ac-

cross cohorts and time, their estimator approximates well the average treatment effect, close to

the quantity recovered by the log-OLS estimator. However, in amore general case, the estimated

quantity is closer to the average model parameter, which differs from the average multiplicative

treatment effect in a nonlinear setting. It further breaks the equivalence relationship between

the TWFE PPML estimator and the ratio-of-ratios in the canonical 2x2 setting. In this paper, I

propose a non-linear estimator, allowing for any general form of treatment heterogeneity, that

yields an estimate interpretable as a semi-elasticity, andderived from the ratio-of-ratio estimator.

In section 2, I present a setting inwhich the researcher has an incentive to recover a treatment

effect semi-elasticity. I present a data generating process suited to use TWFE PPML estimators.

In section 3, I present the 2x2 canonical setting with two time periods and two groups. I present

the quantity of interest for the researcher: the change in percentage in the outcome induced by

the treatment. I discuss required assumptions for identification of this quantity using sample

moments, and the results from Ciani and Fisher (2019) that the TWFE PPML estimator recovers

the ratio-of-ratios. I then present the drawbacks from using the TWFE log-OLS in this setting.

In section 4, I move to the multiperiod setting and heterogeneous treatment timing case. I

discuss potential estimates to recover correct multiplicative difference-in-differences (ratio-of-

ratios) estimates. I show that estimators aggregating treatment effects estimated separately for

each cohort-time cell, such as what is done in the linear case, are not always well suited for the

non-linear models. I provide an estimator recovering the correct ratio-of-ratios analogous to the

canonical setting. I show that this estimator can be recovered etiher through an imputation or

fully saturated model procedure.

I compare my estimator to the true quantity of interest against alternative estimators in sec-

tion 5. I confirm the result fromCiani and Fisher (2019) that the TWFE PPML recovers the ratio-

of-ratios and that the TWFE log-OLS estimator recovers the average parameter in the canonical

setting. In staggered treatment timing case, I show that TWFE PPML is biased from the true

quantity of interest, but that TWFE log-OLS displays an even bigger bias. I show that the pro-

posed estimator of this paper correctly estimates the true ratio-of-ratios, even when treatment

both is heterogeneous accross time and individuals, and induces a change in the outcome vari-

ance. In contrast, Nagengast and Yotov (2023) estimator recovers the average model parameter,
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but only when there is no individual heterogeneity within treated cohorts.

I study the effect of information-exchange-on-request on bank deposits held in tax havens

(Johannesen and Zucman, 2014; Menkhoff and Miethe, 2019) as a real set-up to assess the per-

formance of my estimator. Papers in Public Economics tests wether treaties of automatic ex-

change of information regarding bank account owners decreased cross-border deposits owned

in tax havens. The setting motivates the use of a nonlinear estimator and the estimation of a

treatment effect semi-elasticity. First, the outcome under study strongly motivates the use of

the PPML estimator. Bilateral deposits are censored to positive values only. Treatment is likely

to generate a change in the outcome level (total deposits) and the variance of the outcome (for

example if bigger tax havens tend to sign bilateral exchanges of information). Country pairs

display very different baseline cross-border owned deposits, which motivates the researcher’s

interest for a treatment effect expressed as a semi-elasticity. Second, treatment (treaties passed)

is staggered and likely to be heterogeneous by time and country-pairs, providing the ideal set-

ting to test for robustness for recent bias of TWFE estimators. I find that the author’s estimate

have a small positive staggered treatment bias. However, the treated cohort display very large

treatment effect heterogeneity, which causes the difference-in-difference estimates of the log-

linearized model (log-OLS) to differ by a lot from the ratio-of-ratio (PPML) estimates. More

precisely, even though treaties tend to cause a large a negative effect on tax havens deposit on

average, their effect on the average volume of deposits held offshore is weaker as some large

country-pairs react positively or do not react by much. I show that in this case, the proposed

imputation estimator of this paper recovers a similar quantity to the TWFE PPML estimator,

while the aggregation estimator from Nagengast and Yotov (2023) recovers an intermediate

quantity between log-OLS and PPML, with an interpretation depending on the time structure

of the treatment.

This paper relates to several trends of the literature in applied econometrics. It relates first

to a literature motivating the use of PPML estimators for multiplicative model estimation (Silva

and Tenreyro, 2006; Cohn et al., 2022; Chen and Roth, 2023), which can account for observations

with zeros in the dependant variable, and do not suffer from bias arising from log-linearization.

I show that in presence of strong treatment heterogeneity, the log-OLS estimator can yield esti-

mates of the opposite sign by cumulating several types of biases. I contribute to the literature

on the interpretation of models estimating semi-elasticities (Kennedy, 1981; Jan van Garderen
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and Shah, 2002) and on non-linear difference-in-differences (Angrist, 2001; Ciani and Fisher,

2019; Wooldridge, 2023). I show that for non-linear difference-in-differences models, in pres-

ence of large treatment heterogeneity, the interpretation of the PPML estimator can differ by

a lot from the interpretation of the log-OLS estimator. This is due to the fact that the average

mutiplicative effect does not correspond to the multiplicative effect on the average. Finally, I

contribute to the literature on the estimation of ATE with difference-in-differences strategy in

the presence of heterogeneous treatment effects (De Chaisemartin and d’Haultfoeuille, 2020;

Callaway and Sant’Anna, 2021; Sun and Abraham, 2021; Borusyak et al., 2024; De Chaisemartin

and D’Haultfoeuille, 2023; Nagengast and Yotov, 2023). I propose a new estimator robust to

staggered treatment bias that recovers the ratio-of-ratios, a quantity similar to one yield by the

TWFE PPML estimator in the two-by-two canonical case.

The rest of the paper proceeds as follows. Section 2 briefly presents an empirical model il-

lustrating a data generating process of interest to researchers willing to estimate a proportional

treatment effect (semi-elasticity). Section 3 presents the 2x2 canonical setting of multiplicative

differences and the two-way fixed effect poisson-pseudomaximum likelihood estimator (TWFE

PPML). Section 4 presents the staggered treatment case, the setting induced bias of TWFEPPML

and a robust estimator to recover the ratio-of-ratios. Section 5 displays simulations compar-

ing existing estimators in the canonical and staggered cases. Section 6 explores the question of

Menkhoff and Miethe (2019) as an empirical application. Section 7 concludes.
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2 Model

We observe individuals subject to a policy or a economic shock, and an outcome. We are inter-

ested in the causal effect of this policy on this outcome. We suppose that the ouctome under

study yigt has the following conditional mean:

E[yigt|Dit] = exp(αi + βt + δDigt) (2)

The researcher observes:

yigt = exp(αi + βt + δitDigt)ηigt (3)

With i the individual (person, firmor country), g the group (or cohort) of individuals treated

on the same year, and t the year. Digt takes the value 1 if individual i from group g is treated

and time t, zero otherwise. The terms αi and βt respectively represent individual-specific de-

terminants fixed in time and a time trend common to all individuals, driving yigt. The term ηigt

captures remaining individual-time varying heterogeneity such that E[ηigt|Dit, αi, βt] = 1. The

coefficients δit capture the heterogeneous treatment effects across i and t. We want to estimate

the proportional effect of the policy on the outcome.

In case the policy under study has a homogeneous effects across individuals and time, the

DGP updates to the following model:

yigt = exp(αi + βt + δDigt)ηigt (4)

The model can be extended to include a vector of control variables Xigt:

yigt = exp(αi + βt + δitDigt + X ′
igtγ)ηigt (5)

Researchers often consider that the same DGP can be represented the following linear model,

using a log transformation:

ln yigt = αi + βt + δDigt + ln ηigt (6)

With E[ln ηit|Dit] = E[εit|Dit] = 0 which imposes stricter conditions on the error term (Silva and

Tenreyro, 2006).

3 The 2x2 canonical setting

I begin by describing the simple canonical setting. The researcher observes two groups of coun-

tries G = 0, 1, at two periods t = 0, 1. Group 1 is treated at period 1 (i.e. the policy is imple-
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mented), and that group 0 is never treated. For each group and time period, the researcher

observes the outcome yigt.

3.1 Quantity of interest and identification

In the case of multiplicative models, the researcher is often interested in the proportional treat-

ment effect. When the researcher searches a treatment effect in percentage, or semi-elasticity,

the multiplicative difference-in-difference targets (Angrist, 2001):
E[yigt(1)] − E[yigt(0)]

E[yigt(0)] (7)

This quantity is the change in the outcome induced by the treatment, or the ATE, as a pro-

portion of the non treated outcome level. It is the change of the expected outcome variable in

percentage of the expected outcome in the absence of treatment: a semi-elasticity. This is also

the quantity that Chen and Roth (2023) advise to target when the researcher wants to include

zeros and recover a treatment effect in percentage. In case of constant treatment effect across

individuals, this quantity correspond to exp(δ) − 1 from our model.

In the sample, we can only estimate the average treatment on the treated, theATT, and its pro-

portional counterpart, the proportional treatment on the treated (PTT). The PTT corresponds

to the quantity of interest from (7) and is the ATT normalized by the expected value of the non

treated outcome:

PTT = E[y1(1)|G = 1] − E[y1(0)|G = 1]
E[y1(0)|G = 1] = ATT

E[y1(0)|G = 1]

= E[exp(αi + βt + δi)ηit|G = 1] − E[exp(αi + βt)ηit|G = 1]
E[exp(αi + βt)ηit|G = 1]

= E[exp(αi + βt)(exp(δi) − 1)|G = 1]
E[exp(αi + βt)|G = 1]

(8)

It is important to note that using the linear model from equation 6 does not always target the

same quantity of interest, especially when treatment effect is heterogeneous (Ciani and Fisher,

2019). Rewriting the linear difference-in-difference target:

E[ln y1(1)|G = 1] − E[ln y1(0)|G = 1] = E[αi + βt + δi + εi|G = 1] − E[αi + βt + εi|G = 0]

= E[δi|G = 1] ̸= ln E[exp(δi)|G = 1]
(9)

Because of Jensen’s inequality. The target of the linear model is the approximated average effect

when treatment effects δi are small. The two model estimation targets are the same only when

treatment effect is homogeneous: δi = δ, ∀i.
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E[y1(1)|G = 1] can be directly estimated from coresponding moments in the data, but not

E[y1(0)|G = 1] which is by definition never observed. Further assumptions are needed to esti-

mate the ATT and PTT.

3.1.1 Identifying assumptions

A1: No anticipation assumption On average, among the eventually treated group there are

no anticipatory changes that affect the potential outcomes prior to the intervention.

E[y0(1) − y0(0)|G = 1] = 0 (10)

A2: Unconditional multiplicative parallel trend assumption (MPT) This assumption states

that in the absence of treatment, changes in percentages of expected outcome should have been

the same in the two groups. The averages of the two groupswould have known the same growth

in the absence of treatment.3

E[y1(0)|G = 1]
E[y0(0)|G = 1] = E[y1(0)|G = 0]

E[y0(0)|G = 0] (11)

Using model 3 notations, another version of this assumption is:

∀it, E[yit(0)|Dit, ] = exp(αi + βt) (12)

Note that in this case the parallel trend is on the growth of the averages and not on the average

growths. The linear model therefore also differs in term of parallel trend assumption:

E[ln y1(0) − ln y0(0)|G = 1] = E[ln y1(0) − ln y0(0)|G = 0]

⇔E[ln y1(0)|G = 1] − E[ln y0(0)|G = 1] = E[ln y1(0)|G = 0] − E[ln y0(0)|G = 0]
(13)

This assumption states that in the absence of treatment, the expected log of the outcome in the

treated group should have changed by the same log points as the non-treated group. It implies

that the average approximated growth rate should have been the same in the two groups. With

treatment heterogeneity, the two models do not imply the same parallel trend assumption.

A visual exploration can be undertaken on pre-trends to check which assumption seems

more reliable. In the case of the multiplicative model, the pretrend should be similar when
3This assumption is also called the index parallel trend assumption by Wooldridge (2023), for GLM difference-

in-differences.

9



the researcher plots the logarithm of the total outcome for treated and control groups. In case

of the log-linear model, the pretrend should be similar when the researcher plots the average

logarithm of the outcome for treated and control groups.

A2.B: Conditional multiplicative parallel trend assumption (MPT) The previous assump-

tion can be amended to include covariates. If the multiplicative parallel trend holds condition-

ally, we assume that in the absence of treatment and conditional on the change in the outcome

induced by covariates Xit, the treated group would have followed the same trend as the un-

treated one. Using model 3 notations, this is equivalent to assuming:

∀it, E[yit(0)|Dit, Xit] = exp(αi + βt + X ′
itγ) (14)

3.1.2 Identification

E[y1(0)|G = 1] can be expressed as a function of terms that can be estimated using the multi-

plicative parallel trend assumption (A.2):

E[y1(0)|G = 1] = E[y1(0)|G = 0] × E[y0(0)|G = 1]
E[y0(0)|G = 0]

I inject (11) in (8) and recover the PTT expressed as a ratio of ratios (by analogy to a difference-

in-differences in the linear case):

PTT = E[y1(1)|G = 1]
E[y0(0)|G = 1]/

E[y1(0)|G = 0]
E[y0(0)|G = 0] − 1 (15)

The expression of the ATT follows, which expresses the treatment effect in units of the outcome

variable:

ATT = E[y1(1) − y1(0)|G = 1]

= E[y1(1)|G = 1] − E[y1(0)|G = 1]

= E[y1(1)|G = 1] − E[y1(0)|G = 0] × E[y0(0)|G = 1]
E[y0(0)|G = 0]

(16)

3.2 Estimation

3.2.1 Corresponding sample moments

The PTT andATT can be estimated from their corresponding samplemoments. In the following

expressions, I denote Gi a binary variable taking the value 1 if the individual i belongs to the
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treated group, and yi,t the outcome of country i at time t. There are n individuals in the sample.

Estimates of both quantities τ̂ and R̂oR are:

τ̂ =
∑n

i=1 Gi(yi,1)∑n
i=1 Gi

−

∑n

i=1(1−Gi)(yi,1)∑n

i=1(1−Gi)
×

∑n

i=1 Gi(yi,0)∑n

i=1 Gi∑n

i=1(1−Gi)(yi,0)∑n

i=1(1−Gi)

τ̂ = 1∑n
i=1 Gi

( n∑
i=1

Gi(yi,1) −
∑n

i=1(1 − Gi)(yi,1)∑n
i=1(1 − Gi)(yi,0)

×
n∑

i=1
Gi(yi,0)

)
(17)

To estimate the ATT, the average outcome of the treated group in period 0 is multiplied by the

growth rate of the non treated group between the two periods. It recovers the counterfactual

outcome of the treated group if the multiplicative parallel trend assumption holds (i.e. parallel

trend assumption in the growth rate).

The proportional treatment effect is recovered by computing a ratio of ratios (RoR), relying

again on the multiplicative parallel trend assumption.

R̂oR =

∑n

i=1 Gi(yi,1)∑n

i=1 Gi∑n

i=1 Gi(yi,0)∑n

i=1 Gi

/

∑n

i=1(1−Gi)(yi,1)∑n

i=1(1−Gi)∑n

i=1(1−Gi)(yi,0)∑n

i=1(1−Gi)

− 1

=
∑n

i=1 Gi(yi,1)∑n
i=1 Gi(yi,0)

/

∑n
i=1(1 − Gi)(yi,1)∑n
i=1(1 − Gi)(yi,0)

− 1

(18)

This is the ratio-of-ratios (RoR) estimator.

3.2.2 Equivalence of TWFE PPML and ROR estimator

In the linear canonical setting, there is a direct equivalence between the moments used to re-

cover the difference-in-differences and the quantity computed by the two-way fixed effect OLS

estimator. This property largely motivated the use of TWFE estimator by the applied literature.

A similar analogy holds in the multiplicative model case. In the non-linear case, the TWFE

PPML estimator in the 2-by-2 setting computes the RoR and maintains an equivalence. This re-

sult is provided by Ciani and Fisher (2019) and I verify this property in following in simulations

and estimations.

In the canonical setting, we have:

exp(δ̂P P ML) − 1 =
∑n

i=1 Gi(yi,1)∑n
i=1 Gi(yi,0)

/

∑n
i=1(1 − Gi)(yi,1)∑n
i=1(1 − Gi)(yi,0)

− 1 (19)
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The same quantity as in (18) that converges in probability, under the identification assump-

tions, to the quantity of interest (8):

E[y1(1)|G = 1] − E[y1(0)|G = 1]
E[y1(0)|G = 1] (20)

This property, and the tractability of the PPML estimator with high dimensional fixed effects

motivates the use of this estimator.

3.2.3 Other reasons for the researcher to choose TWFE PPML over TWFE log-OLS

Appart from the different estimation target and parallel trend assumption, there are other rea-

sons why an applied researcher might prefer to use TWFE PPML over TWFE log-OLS.

Zeros The most well understood issue in the economics literature is the exclusion of zeros by

log-OLS. The model cannot be estimated on observations with zeros in the dependent variable,

excluding them from the estimation sample. This is because a proportional change for the exten-

sive margin is not defined (Chen and Roth, 2023). TWFE PPML solves this issue by estimating

the change in the average. This quantity weights predicted individual proportional changes

by their predicted counterfactual outcome share in total predicted outcome. Intuitivelly, PPML

provides small weights to individuals zeros or small observations by predicting small counter-

factual outcomes, because these individuals are the most likely to display extreme proportional

changes.

Heteroskedasticity bias Back to the case of multiplicative difference-in-differences, consider-

ing a log-normal error term once again, the estimated coefficient of the log-OLS model is (Ciani

and Fisher, 2019):

δ̂log−OLS = δ − σ2
11
2 + σ2

10
2 + σ2

01
2 − σ2

00
2 (21)

With σ2
gt the conditional variance of ln ηit in group g at time t. If the variance fo the error term is

constant within groups across time in the absence of treatment, we have that the bias is caused

by the change in variance induced by the treatment is:

δ̂log−OLS = δ + σ2
10 − σ2

11
2 (22)

The second term is negative if the variance of the error term increases with treatment, and vice

versa (second order sochastic dominance).
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Cohn et al. (2022) provide an intuition of how the log-OLS bias can be magnified for empir-

ical models including fixed effects. In a multiplicative model, the group fixed effects affect both

the level of the outcome and the variance of the error term, as they are scaling parameters. Based

on simulations, the authors show that the inclusion of fixed effects magnifies the log-OLS bias

if the fixed effects account for a bigger share of the variation in yigt than in the heteroskedastic

standard deviation of the error term ση(x).

4 Multiperiod setting and heterogeneous timing

I turn to the multiperiod and multicohort setting. There are now T time periods starting at

t = 1, and g cohorts of individuals treated at different times. Once a cohort gets treatment, it is

considered treated until the end on the panel (treatment is not reversible). The two assumptions

made earlier are generalized to this setting:

A1: No anticipation assumption On average, among the eventually treated group there are

no anticipatory changes that affect the potential outcomes prior to the intervention.

E[yg,t(1) − yg,t(0)|G = 1] = 0 ∀t < q (23)

With q the time of treatment for cohort g.

A2: Multiplicative parallel trend assumption

∀it, E[yit(0)|Dit] = exp(αi + βt) (24)

Which implies that across units i, for all periods t and t′, E[Yit′ (0)]
E[Yit(0)] is the same. Again, this is

equivalent to assuming that in the absence of treatment, the growth rate of the average outcome

in the treated group between two time periodswould have been the same than in the non-treated

group.

Researchers have been tempted to extend the equivalence between the DiD and TWFE esti-

mators to the multiperiod setting. A recent literature in econometrics (see De Chaisemartin and

D’Haultfoeuille, 2023) shows that TWFE estimators in amultiperiodmultigroup setting can lead

to biased estimates of the ATT because of a model making too strict assumptions on treatment

homogeneity. When units are treated at different times and treatment effect are heterogeneous
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across time periods, this type of model makes wrong comparisons between treated and control

groups, and estimates a quantity that averages treatment effects with negative weights.

I show with a simple example that this problem also arises in the multiplicative case with

PPML, and discuss approaches to recover a proportional treatment effect in staggered settings.

4.1 PPML TWFE bias

We take a simple example to show that the TWFE PPML estimator is biased under the same

conditions as TWFE OLS. There are two individuals i = A, B observed at three time periods

t = 1, 2, 3. Individual A is treated in period t = 2 and individual B is treated in period t = 3,

such that B is the control group for individual A in t = 2. The treatment effect is proportional,

such that there is a multiplicative parallel trend holding (i.e. in growth rate):

yit = exp(αi + βt + δitDit)ηit (25)

If treatment effect is homogeneous, there is δA2 = δA3 = δB3 = δ. If we have heterogeneous

treatment effect then δA2 ̸= δA3 ̸= δB3. The quantity of interest is then:

PTT = E[yit(1)|D = 1] − E[yit(0)|D = 1]
E[yit(0)|D = 1] =

∑
i,t,Dit=1

E(yit(0))∑
i,t,Dit=1 E(yit(0))

(
exp(δit) − 1

)
(26)

Which is a weighted sum of cohort and time specific treatment effects exp(δit) − 1. The weights

ωit correspond to the share of the counterfactual outcome in the total size of counterfactual

observations.4 The TWFE PPML estimator assumes the following model:

yit = exp(αi + βt + δDit)ηit (27)

Solving the systemyields the TWFEPPMLestimator for the proportional treatment effect exp(δ)−

1:

exp(δ̂P P ML) − 1 = yA2(yB1 + yB3) − yB2(yA1 + yA3))
yB2(yA1 + yA3))

(28)

With homogeneous treatment effect, using expected values of outcome realization, this quantity

should yield:
E(yA2(yB1yB3)) − E(yB2(yA1) + yA3))

E(yB2(yA1yA3))
= exp(δ) − 1 (29)

4The PPML estimator weights more cells with large counterfactual outcomes and reduces weigths associated to

cells with the smaller counterfactual outcomes which are the most susceptible to display the most extreme propor-

tional changes.
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With treatment heterogeneity, the quantity estimated by TWFE PPML becomes:

E(yA2(yB1yB3)) − E(yB2(yA1) + yA3))
E(yB2(yA1yA3))

= exp(δA2) × 1 + exp(δB3 + β3)
1 + exp(δA3 + β3)

− 1 (30)

The TWFE PPML recovers here the growth rate of the "good" comparison period (t = 2),

scaled by the differential in growth rate between the two groups in the second period. This

scaling will be bigger if the common trend in this later period is large (exp(β3) is high). There

is an analogy with the problem encountered in the linear case, with some treatment effects con-

tributing potentially with a potential negative weight to the quantity of interest.

4.2 Robust estimators for TWFE PPML

The issue generated by the TWFE estimators comes from the fact that it imposes constraints that

are too strong on the model in the staggered setting. Recent papers solve this issue in the linear

case by allowing for the most flexible model given the data structure (Sun and Abraham, 2021;

Borusyak et al., 2024; Wooldridge, 2021).

Wooldridge (2023) extends this idea to the non-linear case. With giq and indicator variable

taking the value one if idividual i is treated in period q, one can estimate the following model

using poisson-pseudo maximum likelihood:

E[yit|giq, ..., giT ] = exp
[ T∑

r=q

T −r∑
l=0

δrs

(
Dit × gir × 1{t − r = l}

)
+ αi + βt

]
(31)

In this model:

δgt = log(E(yigt(1)|D = 1)) − log(E(yigt(0)|D = 1))

⇔ exp(δgt) − 1 = E(yigt(1)|D = 1) − E(yigt(0)|D = 1)
E(yigt(0)|D = 1)

(32)

So estimating δgt recovers the correct estimation target: the proportional treatment effect on

cohort g and time t. The researcher is often interested in a more aggregated estimation target,

which is not covered by Wooldridge (2023). The next section explain why aggregating cohort-

time treatment effects as in the linear case presents some caveats with a multiplicative model,

and the next section presents the proposed approach of this paper.

4.2.1 Aggregation estimators in the non-linear case

Robust estimators have been developed for the linear case to reccover aggregate treatment effects

(De Chaisemartin and d’Haultfoeuille, 2020; Callaway and Sant’Anna, 2021; Sun and Abraham,
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2021; Borusyak et al., 2024; Wooldridge, 2021). These estimators rely on recovering treatment

effects for correct "building blocks" (i.e. cohorts) and aggregating them over the desired sample

to recover an estimate of the ATT. For example De Chaisemartin and d’Haultfoeuille (2020);

Callaway and Sant’Anna (2021); Sun and Abraham (2021) compute two-by-two DiD estimators

for each existing combination of treated cohort and time period. For three treated cohorts 1, 2, 3,

they would for example compute the treatment effect on cohort 1 by computing the DiD using

a control group of never treated on the time period, then the DiD of cohort 2 using a similar

control group, ... And aggregate all estimated DiD to recover the average effect. Given that the

models used are linear, the ATT can be easily retrieved aggregating linear treatment effects.

Translated in the multiplicative setting, one could also compute the two-by-two estimates

of PTTg,t by group and time period, and average this effect to recover an aggregate treatment

effect. This would yeld an estimator of the form:

∑
νg,tR̂oRg,t (33)

With νg,t a weight associated to observations in g, t, chosen by the researcher depending on the

estimation target.

Using the fully interacted model above, we know that estimating coefficients δrs recovers the

multiplicative model estimation target for each cohort-time cell: exp(δ̂P P ML
rs ) − 1 is the multi-

plicative effect on the average of cohort g at time t. Such an "aggregation" estimator with the

same spirit as the ones from the linear case is:

exp
( G∑

g

T∑
t

νg,t(δ̂P P ML
g,t )

)
− 1 (34)

If treatment is homogeneous within cohort-time cells, this estimator approximates the average

proportional effect on the treated. The estimator can be easily implemented using the ppmlhdfe

stata commandwhen the number of parameters to estimate gets big: interaction coefficients can

be estimated at fixed effect, appropriately rescaled and aggregated to recover (34).5

The researcher should bear in mind that this quantity presents two caveats in the multiplica-

tive case. First, its interpretation is different than the ratio-of-ratios estimator in the canonical

case when treatment effect is homogeneous within cells. The interpretation will be closer to the

one recovered by the log-linearmodel, which is a transformation of the average parameter of the
5See Correia et al. (2020) for ppmlhdfe command.
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model, and approximate the average proportional effect. But the quantity in (35) would most

of the time differ from the proportional change in the average because of Jensen’s inequality.

exp
( G∑

g

T∑
t

νg,t(δg,t)
)

− 1 = exp
( G∑

g

T∑
t

νg,t(log
(E[ygt(1)|g] − E[ygt(0)|g]

E[ygt(0)|g]
)

+ 1)
)

− 1 (35)

When comparing estimates of the static TWFE PPML and this aggregation estimator, one should

be concious about the fact that the difference between the two is due to a different quantity es-

timated and the staggered setting bias. Compare to the staggered robust estimators available

for the log-linear model, this estimator has the advantage to be robust to the heteroskedasticity

bias developed above. It also means that this estimator is not always suited to check the robust-

ness of the parallel trend assumption on leads coefficients. Coefficients are estimated using the

multiplicative model, which implies a parallel trend assumption in growth rate of the average

outcome. It could be that this parallel trend holds in the average growth rate but not in the

average parameter.

Second and more worryingly, if δigt ̸= δgt, ∀i ∈ g, the quantity recovered by this estimator

might not have an interpretable meaning because of Jensen’s inequality. If there is treatment

effect heterogeneity within a cohort-time cell g, t, the estimated coefficient δ̂P P ML
g,t will recover

the proportional treatment effect on the average of cell g, t. The estimator in (34) recovers the

average over cells ofmultiplicative treatment effect on the average of cells, an intermediate quan-

tity between the estimated parameter (log-OLS) and the estimated growth rate of the average

(ratio-of-ratios). It would moreover arbitrarily depend on the structure of the panel and the

treatment timings.

4.2.2 Proposed imputation estimator

The next section proposes a new estimator for proportional treatment effects, recovering a semi-

elasticity derived from the ratio-of-ratios estimator. This estimator is robust to any type of treat-

ment heterogeneity in a staggered treatment setting. It is an imputation estimator in the spirit

Borusyak et al. (2024), based on the idea that one can specify the correct counterfactual model.

Wooldridge (2023) shows that this approach is equivalent to the fully interacted model and I

derive the equivalent interaction estimator in appendix.

Under our identification assumptions, on the expected conditional mean of the counterfac-

tual outcome is: E[yigt(0)|Digt = 1] = exp(αi + βt). The parameters αi and βt can be estimated
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on the sample of never-treated and not-yet treated observations. One can then predict the coun-

terfactual outcomes for the treated sample, using estimates of these estimates:

ŷigt(0) = exp(α̂i + β̂t)

Wooldridge (2023) states that:

τ̂g,t =
∑
i∈g

yigt(1) − ŷigt(0)

Estimates the ATT in level for cohort g and time t, and can also be recovered by predicting the

treatment average partial effect for cell g, t. Contrary to coefficients δ̂g,t, this is a linear effect that

can be aggregated linearly without loss of interpretability. I recover the average treatment effect

in level on the full treated sample, which is equivalent to computing the difference between the

observed outcome and the predicted one on the treated sample:

τ̂ =
∑

i,Digt=1
Ng,tτ̂g,t =

∑
i,Digt=1

yigt(1) − ŷigt(0) (36)

To recover the proportional treatment effect, or treatment semi-elasticity, this quantity can be

scaled by the total counterfactual outcome to recover the following estimator:

R̂oRimput = τ̂∑
i,Digt=1 ŷigt(0)

=
∑

i,Digt=1 yigt(1)∑
i,Digt=1 ŷigt(0)

− 1 =
1

ND=1

∑
i,Digt=1 yigt(1)

1
ND=1

∑
i,Digt=1 ŷigt(0)

− 1
(37)

This estimator is based on the ratio of the average of observed and counterfactual outcomes.

Its interpretation is similar to the TWFE PPML and RoR estimator in the canonical setting: the

percentage change in the average outcome due to treatment. The numerator converges in prob-

ability to the expected value of the treated outcome in the treated group. The denominator,

under the assumption the parallel trend is valid, converges to the expected value of the un-

treated outcome in the treated group. It is obtained by multiplying the average outcome of the

treated groups in the pre-treatment period by the growth rate of the non-treated group after

treatment. This quantity should converge to the true PTT, provided that the denominator does

not reach zero. This is unlikely to take place: the PPML model only predict strictly positive val-

ues. Moreover for themodel to predict counterfactual outcomes very close to zero, it means that

the researcher faces a DGP in which treatment affect mainly the extensive margin, and therefore

is more suited for a binary outcome model. The estimator R̂oRimput can be easily computed for

a less aggregated level, such as cohort or relative time.
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4.2.3 Special cases for the imputation estimator

Categorial parallel trends Empirical researchers often choose to specify categorial parallel

trends, or parallel trends holding across some groups of the population. For example, if treated

and control firms are compared over time within the same region or sector. In the TWFEmodel,

this translates in specifying time fixed effects disaggregated by the desired catagory c:

yigct = exp(αi + βct + δDigt)ηigt

The correct estimation of the treatment effect in level and counterfactual outcome requires to

slightly adjust the counterfactual model and to estimate more parameters. The imputation pro-

cedure only requires to estimate yict = exp(αi + βct)ηict on the treated sample for pre-treatment

periods and the never-treated to get α̂i and β̂jt. The predicted counterfactual outcome on the

treated sample:

ŷigt(0) = exp(α̂i + β̂ct)

τ̂ =
∑
i∈ω1

yigt(1) − ŷigt(0)

Going through the imputation process is less computationally intensive than the interaction

approach, especially when the number of categories c increase, and is numerically equivalent.

Control variables Themutiplicative parallel trend often holds conditionally on a set of control

variables (assumptionA2.B).Wooldridge (2023) explains how to include time-constant controls

in the fully saturated model and keep the equivalence with the imputation estimator:

E(yipt|git, ..., giT ) = exp
[ T∑

s=2
(fstXi)πCt +

T∑
g=q

T −r∑
l=0

(Dit × gig × 1{t − g = l})δgl

+
P∑

p=1

T∑
g=q

T −r∑
l=0

(1{c = s} × Dit × gig × 1{t − g = l})ζpgl

+
P∑

p=1

T∑
g=q

T −r∑
l=0

(Ẋig × Dit × gig × 1{t − g = l})ξgl + αij + βjt

]

Coefficients πCt capture the divergence from the parallel trend due to control variable Xij . Coef-

ficients ξgl the divergence from the average treatment effect in cohort g at time l due to variables

Xij . Control variables are centered on the treated sample: Ẋ = X − E(X|D = 1). This normal-

ization ensures that δr has the desired interpretation log(E[yr(1)|g = 1]) − log(E[yr(0)|g = 1])
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among the treated. The ATT is recovered as before by predicting average partial effects of treat-

ment on the desired sample. The idea behind this model is to allow full heterogeneity in treat-

ment effect across the level of control variables Xi in the sample. Limitation to time constant

covariates can be quite restrictive, especially if researchers wish to control for within cohorts

time varying shocks that could counfound the treatment effect estimation.

I propose instead to use the imputation process by allowing for amore flexible counterfactual

model (such as Borusyak et al. (2024)). The equivalence with the interaction approach breaks

in this case. The researcher assumes the DGP to approximated by:

yigt = exp(αi + βt + δitDigt + X ′
igtγ)ηigt (38)

With Xigt a set of individual specific, time-varying, variables impacting the outcome yigt. Under

the conditional parallel trend (14), the counterfactual model can be estimated by:

ŷigt(0) = exp(α̂i + β̂ct + X ′
igtγ̂)

Which requires to estimate α̂i, β̂ct and γ̂ on the sample such that Dit = 0. We recover the pro-

portional treatment effect then as:

R̂oRimput =
∑

i∈ω1 yigt(1) − ŷigt(0)∑
i∈ω1 ŷigt(0)

= τ̂ imput∑
i∈ω1 ŷigt(0)

Triple differences In a triple difference approach, researchers observes treated cohorts that

differ along two additional dimensions, denoted as j and p, which are used to select control

groups. These dimensions can represent sectors and products, or regions, and are used to cor-

rect the potential bias of a simple difference-in-differences estimator by cancelling out this bias

using a supplementary dimension (Olden and Møen, 2022). The expected conditional mean

takes the following form:

E[yi(jp)gt|G, Dit] = exp(αi + βjt + βpt + δitDigt) (39)

The new parallel trend assumption becomes:

E[yi(jp)gt(0)|G] = exp(αi + βjt + βpt) = exp(αi) × exp(βjt) × exp(βpt)︸ ︷︷ ︸
Relative growth rate

(40)

Here, exp(βjt) and exp(βpt) denote the relative growth rates associatedwith the two dimensions.

If j is a state and p a product this assumption states that the relative growth rate between treated
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and non treated products in the treated state should have been the same that in the non treated

states in the absence of treatment.

Using the imputation approach simplifies the analysis compared to interactionmodels, which

require interacting all the cohort time interactions with the p and j dimensions to break down

δgs coefficients. With the imputation approach, the expected outcome yijpgt is estimated on the

not-yet and never-treated samples as exp(αi +βjt +βpt)ηijt. The imputed counterfactual outcome
̂yijpgt(0) is then calculated as exp(α̂i + β̂jt + β̂pt). The estimate is recovered as above.

5 Simulations

I simulate data to compare estimators presented in the previous section.

5.1 Common treatment timing

5.1.1 Data generating process

I generate a panel of 10,000 individuals observed for three time periods t = 1, 2, 3. The outcome

yit follows a multiplicative data generating process:

yit = exp(µt + αi + δiDit)ηit

With µt the time effects, αi the individual effects, Dit the treatment status and δi the treatment

effect, and ηit a log-normal error term such that E[ηit|µt, αi, Dit] = 1. Individuals are treated in

period 3, such that treatment timing is homogeneous. I generate some selection into treatment

status so that I need to implement a difference-in-differences strategy to recover the causal effect

of treatment.

I also introduce heteroskedasticity in the error term as a function of observables: in one case

variance is function of individual fixed effects, and in the other it is a function of the treatment

status. This second case should jeopardize retrieval of causal treatment effect via log-OLS (Ciani

and Fisher, 2019). Finally, I simulate a homogeneous treatment effect and a case with hetero-

geneity in treatment effect accross individuals. The average treatment effect is positive as δ > 0

when it is homogeneous. Heterogeneity across individuals is normally distributed, such that

the average growth rate corresponds to the growth rate of the average. The standard error is set

such that a small portion of individuals could face true negative treatment effect. Heterogeneity
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in treatment effect allows to compare estimators in their capacity to estimate the average treat-

ment effect. The observed outcome yit is always strictly positive such that there is no difference

between estimators driven by zeros in the outcome. I simulate the data 1000 times.

Table 1: Common timing: simulation cases

Case V (ηit|.) Treatment effect parameter

1 αi δ = 0.31

2 0.2Dit δ = 0.31

3 αi δi = 0.31 + νi, νi ∼ N (0, 0.5)

4 0.2Dit δi = 0.31 + νi, νi ∼ N (0, 0.5)

5.1.2 Simulations results

Table 2 displays the true distribution of the treatment effect and the distribution of estimators

accross simulations. The upper panel displays cases 1 and 2 with homogeneous treatment effect

and the lower panel cases 3 and 4 with heterogeneous treatment effect. In those later case,

I provide the distribution of the average parameter exp(δi) − 1 and the true RoR or growth

rate of the average E[y1igt|G=1]−E[y0igt|G=1]
E[y1igt|G=1] . I estimate the treatment effect using TWFE log-OLS,

TWFE PPML and the imputation estimator. Densities of estimators are displayed in figure B1a

in appendix.

Two estimators are unbiased and strictly equivalent: TWFE PPML and the imputation esti-

mator. For each simulation, they provide the same estimate. I compare TWFE PPML and TWFE

log-OLS. In case of homogeneous treatment and individual heteroskedasticity, in the left upper

panel, log-OLS is the most efficient unbiased estimator. PPML is centered close to the true value

of the effect but display twice a larger variance. Assumption that the treatment has no effect on

the variance of the outcome is quite restrictive. When I introduce heterogeneity varying by treat-

ment status, log-OLS estimates display a downward bias, while TWFE PPML and imputation

are unbiased.

More worriying results come from the case of heterogeneous treatment effects, an assump-

tion difficult to rule out in empirical applications. In both cases, PPML estimates are quite close
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Table 2: 1000 simulations: canonical setting

Homogeneous treatment effect exp(δ) − 1

Case 1

V (ηit|.) = αi

Estimator Mean St.D. Min Max

exp(δ) − 1 0.363 0 0.363 0.363

TWFE PPML/RoR 0.370 0.0810 0.112 0.658

Imputation 0.370 0.0810 0.112 0.658

TWFE Log-OLS 0.364 0.0357 0.259 0.475

Case 2

V (ηit|.) = 0.2Di

Mean St.D. Min Max

0.363 0 0.363 0.363

0.362 0.0509 0.203 0.543

0.362 0.0509 0.203 0.543

0.293 0.0266 0.200 0.367

Heterogeneous treatment effect exp(δi) − 1

Case 3

V (ηit|.) = αi

Estimator Mean St.D. Min Max

exp(δi) − 1 0.363 0.0104 0.333 0.398

True RoR 0.545 0.0125 0.508 0.585

TWFE PPML/RoR 0.544 0.0961 0.233 0.981

Imputation 0.544 0.0961 0.233 0.981

TWFE Log-OLS 0.363 0.0366 0.258 0.496

Case 4

V (ηit|.) = 0.2Di

Mean St.D. Min Max

0.364 0.00991 0.334 0.396

0.545 0.0118 0.505 0.583

0.545 0.0635 0.332 0.768

0.545 0.0635 0.332 0.768

0.294 0.0281 0.195 0.379

to the true value of the growth rate. Estimates are less precise when heteroskedasticity is corre-

latedwith individual effects (Case 3) rather than treatment (Case 4). Turning to TWFE log-OLS,

we observe that the model recovers the exponential of the average parameter, a quantity that

cannot be interpreted in terms of semi-elasticity. The magnitude of the treatment effect differs

by a lot from the PPML estimates and the true growth rate of the average. Moreover, in case of

treatment related heteroskedasticity (Case 4 in the lower right panel) there is an added bias.

Simulations indicate that TWFE PPML is more adapted to the estimation of semi-elasticity

treatment effects. Log-OLS estimator suffers from two drawbacks: first the heteroskedasticity

bias discussed by Silva and Tenreyro (2006) and Ciani and Fisher (2019). Second, it cannot

retrieve an interpretable average treatment effect in case of treatment heterogeneity, but rather
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the average parameter. To these problems adds-up the new TWFE issues introduced by the

recent literature (De Chaisemartin and D’Haultfoeuille, 2023).

5.2 Staggered treatment

5.2.1 Data generating process

I generate a panel of 10,000 individuals observed for fifteen time periods t = 1, ..., 15. The out-

come yigt follows a multiplicative data generating process:

yigt = exp(µt + αi + δitDigt)ηigt

With µt the time effects, αi the individual effects, Digt the treatment status and δit the treatment

effect. Finally ηigt a log-normal error term such that E[ηigt|µt, αi, Digt] = 1. Individuals are

treated in different period starting at t = 10, such that treatment is staggered, and cohorts are

indexed by g. Treatment effect is heterogeneous by time and individual: the setting gathers the

conditions under which the TWFE bias arises.

I use two types of treatment heterogeneity. In the first case, heterogeneity depends on the

time period t. In the second case, I introduce individual heterogeneity normally distributed

across individuals, on top of time heterogeneity. Heterogeneity in treatment effect is now dis-

tributed such that the growth rate of the average outcome is different from the average growth

rate of the outcome due to the treatment for each cell (g, t) Again, I introduce heteroskedastic-

ity in the error term as a function of observables: in one case variance is function of individual

fixed effects, and in the other it is a function of the treatment status. The observed outcome yigt

is always strictly positive such that there is no difference between estimators driven by zeros in

the outcome. I simulate the data 1000 times.

5.2.2 Simulation results

Results of simulations are displayed in table 4. The first two lines of each table panel represent

a different quantity of interest based on the true model. The first line recovers the exponential

of the average parameter δit minus one. This quantity approximate the average growth rate

of the treated outcome, but lacks interpretability if coefficients are large. It is the quantity to

which log-OLS converges in the canonical setting when there is no heteroskedasticity bias. The

second line displays the growth rate of the average treated outcome, which is the true treatment
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Table 3: Staggered treatement timing: simulation cases

Case V (ηit|.) Treatment effect parameter

1 αi δt = log(|t − 12.5|)

2 0.2Digt δt = log(|t − 12.5|)

3 αi δit = log(|t − 12.5|) + νi, νi ∼ N (0, 0.5)

4 0.2Digt δit = log(|t − 12.5|) + νi, νi ∼ N (0, 0.5)

semi-elasticity. This is the quantity recovered by the ratio-of-ratios, and the quantity to which

PPML converges in the canonical setting. I compare five estimators: TWFE Log-OLS, TWFE

PPML, the proposed imputation estimator, the aggregation estimator for PPML, and the log-

linear estimator by Borusyak et al. (2024) robust to staggered settings. Densities of estimators

are displayed in figure B1b in appendix.

The upper left panel presents the case with time constant heteroskedasticity and treatment

heterogeneity by time period. Even in the absence of treatment induced heteroskedasticity, the

TWFE log-OLS estimator falls behind all true quantities of interest. It is now lower than exp(δt)−

1 because of the staggered setting bias. I turn to the TWFEPPMLestimator, which does not suffer

from the heteroskedasticity bias and the treatment heterogeneity bias. The estimated coefficient

is far below the true treatment semi-elasticity. This indicates that TWFE PPML suffers from a

bias in settings with staggered treatment and treatment effect heterogeneity, as TWFE OLS in

the linear setting.

In contrast, the imputation estimator recovers a quantity that is close up to 0.1 percentage

points from the true ratio-of-ratios. In figure B1b, I observe that the kernel density of the es-

timator over the 1000 simulations is centered around the true growth rate of the average. The

aggregation estimator is below this value, and identifies the true average parameter, such as the

estimator from Borusyak et al. (2024).

In the right upper panel, I introduce treatment induced heteroskedasticity. The OLS estima-

tor is now taking negative values for a large number of simulations, and the mean is at -0.00861.

In case the true value of the parameter and the growth rate of the average are large (0.233 and

0.776), using the TWFE log-OLS estimator can lead to statistically non significant parameters
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and potentially negative estimates. The imputation estimator recovers the true growth rate of

the average, or treatment semi-elasticity. The aggregation estimator recovers the average param-

eter. The estimator from Borusyak et al. (2024) now suffers from the heteroskedasticity bias.

In the lower panels I introduce normally distributed individual heterogeneity on top of time

heterogeneity. Individual treament heterogeneity is centered around zero such that the true pa-

rameter average value stays the same. In both cases, only the imputation/interaction estimators

are unbiased. They recover quantities close to the true treatment semi-elasticity. In the case

with individual heteroskedasticity (left panel), the precision of the estimator is reduced. The

difference between log-OLS and the true growth rate is magnified in this case. TWFE PPML

partly accounts for the increased growth rate but is still biased by the staggered setting.

The aggregation estimator is nowdifferent from the average parameter. When there is treate-

ment effect heterogeneity within cohort-time cells, this estimator recovers a quantity interme-

diate between the average parameter and the growth rate. This is because it aggregates within

cells average growth rates (semi-elasticities specific to cells g, t) accross cells. It averages esti-

mates of true RoRs at the g, t level, weighting them by the share of cell g, t in the treated sample.

The estimator from Borusyak et al. (2024) identifies its quantity of interest when there is no

heteroskedasticity bias.
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Table 4: 1000 simulations: staggered treatment

Heterogeneous treatment effect by time exp(δt) − 1

Case 1

V (ηit|.) = αi

Estimator Mean St.D. Min Max

exp(δt) − 1 0.233 0.00354 0.220 0.247

True RoR 0.776 0.0133 0.734 0.824

Imputation 0.780 0.0879 0.398 1.096

Aggregation 0.234 0.0471 0.0721 0.395

Robust log-OLS 0.233 0.0161 0.178 0.282

TWFE PPML 0.198 0.0567 0.0166 0.470

TWFE Log-OLS 0.0452 0.0125 -0.000729 0.0877

Case 2

V (ηit|.) = 0.2Di

Mean St.D. Min Max

0.233 0.00254 0.226 0.240

0.776 0.00941 0.748 0.809

0.775 0.0550 0.559 0.954

0.232 0.0291 0.141 0.332

0.170 0.0121 0.128 0.203

0.194 0.0360 0.0790 0.344

-0.00861 0.00968 -0.0364 0.0215

Heterogeneous treatment effect by time and individuals exp(δit) − 1

Case 3

V (ηit|.) = αi

Estimator Mean St.D. Min Max

exp(δit) − 1 0.233 0.00592 0.216 0.251

True RoR 1.011 0.0307 0.909 1.113

Imputation 1.010 0.102 0.432 1.359

Aggregation 0.394 0.0529 0.185 0.592

Robust log-OLS 0.233 0.0174 0.178 0.295

TWFE PPML 0.340 0.0693 0.121 0.703

TWFE Log-OLS 0.0448 0.0130 0.00833 0.0951

Case 4

V (ηit|.) = 0.2Di

Mean St.D. Min Max

0.233 0.00440 0.221 0.247

1.013 0.0228 0.939 1.112

1.016 0.0675 0.770 1.228

0.397 0.0345 0.274 0.494

0.169 0.0146 0.121 0.217

0.340 0.0472 0.164 0.499

-0.00802 0.01000 -0.0350 0.0279

In figure 1, I recover the dynamic of treatment versions of the various estimators in one

simulation. All coefficients are expressed relative to t−1 to avoid asmuch as possible differences

in interpretation (Roth, 2024).6 I compare their ability to recover the dynamic of the quantities of

interest. I study them in the full heterogeneity case, with treatment induced heteroskedasticity

and heterogeneous treatment effect accross time and individuals (Case 4 of table 4). I estimate

leads and lags for the TWFE log-OLS and PPML, the imputation and interaction estimators and

the aggregation estimator. To derive more easily confidence intervals, I plot log(PTT + 1) for
6I do not include the estimator from Borusyak et al. (2024) now as it as a different interpretation on leads.
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each estimator, which corresponds to δ̂ in the case of the TWFE log-OLS estimator. Red markers

are set for the true value of the parameter and the RoR.

As expected, the imputation estimator is anunbiased estimator of dynamic percentage changes

in the average. It closely matches the true RoR, the quantity to which the PPML estimator con-

verges in the canonical setting. The TWFE PPML estimator is biased donward for treatment

effects at t = 0 and t = 1. For following periods, it is close to the true RoR. TWFE log-OLS

strongly underestimate the RoR, and cannot recover the true parameter, except for t = 0, 1, 2.

The aggregation parameter recovers an intermediate quantity between the average parameter

and the true treatment semi-elasticity (RoR). It converges to the true RoR in the later period,

when there are less treated cohorts: in t = 5, when only the first cohort is treated, it computes

the same quantity as the imputation estimator, because it covers only one (g, t) cell now.

The imputation and aggregation estimators display close to zero and non statistically signi-

ficative coefficients for leads. Coefficients on the leads are more worrying for TWFE estimators.

But both TWFE PPML and TWFE log-OLS display false positive coefficients on pre-trend. This

strongly discourages the use of these estimators, as they might lead to suspect existing pre-

trends in settings with staggered treatment, by displaying false positive coefficients.

Figures B2, B3 and B4 in the appendix display event studies for unique simulations gener-

ated in the other cases. In cases 1 and 2, when there is no heterogeneity in treatement effect

within cohort-time cells (in simulations, driven by individual treatment heterogeneity), the ag-

gregation estimator correctly identifies the average true parameter. In case 3 it computes an

intermediate quantity in between the average true parameter. TWFE log-OLS always fails to

identify the average true parameter, because of either the heteroskedasticity bias or the stag-

gered treatment timing bias. Estimator from Borusyak et al. (2024) correct for this bias and fails

with treatment incuded heteroskedasticity. TWFE PPML displays large false positive pre-trends

and diverges from the true growth rate. Only the imputation estimator correctly identifies the

true growth rate before and after the policy change.
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Figure 1: Case 4: Event study
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Note: 95% confidence intervals. Case 4: Heteroskedasticity function of treatment status, no individual treatment effect heterogeneity. To ease

the derivation of confidence intervals, I plot log(P T T + 1) for each estimator.
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6 Application

6.1 Set-up

I apply my estimator to the empirical question of Menkhoff and Miethe (2019) and Johannesen

and Zucman (2014). The authors investigate whether the G20 crackdown on tax havens in 2009

reduced bank deposits that individuals held offshore to avoid taxes.

Following this summit, many tax havens were compelled to sign bilateral treaties imple-

menting automatic exchange of information on bank account holders. These treaties, signed for

example between France and Switzerland in 2009, make itmandatory for banks in both countries

to report accounts held by each others’ citizens to the tax authorities of their home countries.

The signature and implementation of treaties vary across country pairs. Using data from the

Bank of International Settlements (BIS) from 2003 to 2011 Menkhoff and Miethe (2019) and Jo-

hannesen and Zucman (2014) explore whether a treaty signed between a tax haven and another

country reduces deposits held by citizens of the home country in the tax haven. This is likely to

be the case if those deposits are held for tax or regulation evasion purpose.

I replicate the findings of Menkhoff and Miethe (2019) while the replication of Johannesen

and Zucman (2014) is available in Appendix. The two sets of authors use the same identifica-

tion strategy, but Menkhoff andMiethe (2019), use a more conservative definition of treatment,

benefiting from a few additional years of perspective: they only consider new TIEAs and DTCs

implementing the OECD’s banking transparency standards. Moreover the BIS sample data they

use is publicly available, contrary to Johannesen andZucman (2014)whohad access to extended

confidential data, facilitating replication and comparison of results.

The authors estimate the following model:

log(Depositijq) = α + βSignedijq + γij + θq + ϵijq (41)

With Depositijq the deposits held by citizens of country i in tax haven j at time q. The treatment

variable Signedijq takes the value one when a treaty is signed between i and j at time q. Fixed

effects for country pairs γij and time θq are included. The authors use a two-way fixed effect log-

linearized model, using as a control group all non-haven to haven dyads which did not sign a

treaty during the time frame under study. In the following section, I present results of log-linear

and non-linear TWFE estimators, and estimators ofmodels allowing for full heterogeneity in the

β coefficient across cohorts and month.
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6.2 Results

I estimate equation (41) with five different estimators: the TWFE log-OLS estimator, the linear

estimator from Borusyak et al. (2024), the TWFE PPML estimator, the proposed imputation

estimator, and the aggregation estimator similar to the strategy of Nagengast and Yotov (2023).

Results are displayed in Table 5. Column (1) presents the replication ofMenkhoff andMiethe

(2019) results using their methodology. On average, the signature of a treaty reduced deposits

held in the partner tax havens by 31.9%.7 In column (2), I restrict the sample and remove the

few country-pairs that are always treated to avoid forbidden comparisons. The results remain.

In column (3), I use the estimator from Borusyak et al. (2024) to recover difference-in-difference

estimates corrected for any staggered treatment bias. The effect is slightly bigger than before,

indicating that the staggered treatment bias upward the treatment effect estimate of TWFE.

Columns (4), (5), and (6) display the non-linear estimations. In column (5), the TWFE

PPML estimate that treaties signed decreased deposits held in tax havens by 13.2%.8 Interpret-

ing the quantity of interest, the signature of bilateral treaties of automatic exchange of informa-

tion reduced the average volume of deposits held in tax havens. Column (6) implements my

proposed estimator, for a same quantity of interest, and robust to staggered bias: it recovers a

drop in deposits by 16.5%. The comparison of columns (5)-(6) points to an upward bias because

staggered treatment, as columns (2)-(3).

There is a large difference between the results derived from the difference-in-differences es-

timator (OLS) and the ratio-of-ratios (PPML). The difference between column (1) to (3) and

(5)-(6) comes from the fact that the difference-in-difference estimator approximates an average

effect, while the ratio-of-ratios recovers the effect of treatment on the average, which differ for

non-linear DGPs. The average effect of treaties across country pairs is larger that the effect of

the set of treaties on average deposits held in tax havens.

This empirical pattern can be understood by looking at the joint distribution of treatment

effects and deposit volumes across treatment cells. In figure C1 in the appendix, I display the

raw coefficients from the full interaction model (see equation 31). Each coefficient recovers the

treatment effect on the average for cell (ij, q). Cohorts (country-pairs ij treated at the same

time) are displayed in the same color. We observe that even though cells (ij, q) display a large
7(exp(−0.384) − 1) × 100 ≈ −31.9
8(exp(−0.141) − 1) × 100 ≈ −13.2
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negative treatment effect on average, most of the cells exhibiting the strongest effects are small

country-pairs in term of volume of tax haven deposits held. On the contrary, there are some

cohorts exhibiting at the same time a weak or positive treatment effect, and a large volume of

tax haven deposits, explaining the lower ratio-of-ratios, or change in the average.

The result of column (4) goes further in reconciling both results by showing that the aggre-

gation estimator lies between them. It displays the estimate from an aggregation estimator used

in Nagengast and Yotov (2023). Without treatment-related heteroskedasticity and under lim-

ited treatment effect heterogeneity, this estimator recovers a quantity in between the DiD and

RoR: the average parameter. Its semi-elasticity interpretation lies in between these quantities

of interest. In column (4), I estimate that on average, when a set of countries sign new treaties

with some tax havens on the same month, their deposits held in these tax haven drop by 23.9%

(average change of the averages).9

Imputation (6) and aggregation (4) estimators both recover treatment effect robusts to stag-

gered treatment timing but aggregate heterogeneous treatment effect in different ways. Recov-

ering the treatment effect on the average, the imputation estimator, just as the PPML estimator,

gives a bigger weight to treatment effect in units that affect more the average: country pairs

with bigger deposit volumes. The aggregation estimator weights cohorts differently. In this set-

ting, the interpretation of the aggregation estimator is different than the average change, and is

dependent on the time structure of the treatment.

7 Conclusion

This paper reconciles two significant empirical issues encountered by applied economists when

estimating treatment effects in non-linear models, using difference-in-differences methodolo-

gies. First, the log-OLS estimator is biased in the presence of heteroskedasticity and treatment-

induced changes in outcome variance. Even in the absence of bias, the recovered estimate might

not be the researcher’s prefer quantity in presence of large treatment effect heterogeneity. Sec-

ond, the traditional two-way fixed effects estimators do not accurately recover difference-in-

differences estimates when treatment timing is staggered and effect is heterogeneous.

To reconcile both issues, I propose a novel estimator that recovers of a proportional treatment
9(exp(−0.273) − 1) × 100 ≈ −23.9
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Table 5: Staggered treatment robustness: Static estimator

Linear estimators Non-linear estimators

TWFE OLS

(replication)

TWFE OLS Borusyak

et al. (2024)

Aggregation TWFE

PPML

Imputation

(1) (2) (3) (4) (5) (6)

Coef -0.384*** -0.383*** -0.402*** -0.273** -0.141** -0.180**

S.e. (0.09) (0.09) (0.074) (0.11) (0.078) (0.091)

N 17267 16244 16244 16244 16244 16244

Control group All Never treated & Not yet treated

Country-pair FE Yes Yes Yes Yes Yes Yes

Time FE Yes Yes Yes Yes Yes Yes

Column (1): Replication of Menkhoff and Miethe (2019). Standard errors adjusted for clustering by

country-pairs. Standard errors for the imputation and aggregation estimators are computed through

500 bootstrap replications. No control variables included.

effect (semi-elasticity) even in cases of staggered treatment timing and heterogeneous treatment

effects. Leveraging interpretation of the TWFEPPML estimator in the canonical 2x2 setting, I de-

velop an approach that accurately estimates the ratio-of-ratios, ensuring an interpretable treat-

ment effect estimates similar to the canonical setting. The specified model can account for any

kind of heterogeneity in the treatment effect, under parallel trend and no anticipation assump-

tion. Moreover, it can account for a parallel trend assumption conditional on some covariates.

Through empirical validation and simulations, I compare the proposed estimator compared

to existing approaches. From simulations in with staggered treatment timing and heteroge-

neous treatment effects, it appears that the interaction estimator proposed in this paper is the

most suited to recover the correct treatment change in the average. In all studied cases, its den-

sity is centered around the true ratio-of-ratios, the quantity of interest of the 2-by-2 canonical

setting. It is also robust to any type of treatment effect heterogeneity. The aggregation estimator

used seems more suited to recover the average parameter, and performs better that Borusyak

et al. (2024) when there is a treatment induced heteroskedasticity, but requires tomake assump-

tions on the structure of treatment heterogeneity for interpretation. It is up to the empirical

researcher to think about what is her preferred quantity to recover. The use of TWFE log-OLS

and TWFE PPML is strongly discouraged in this setting, with the former potentially yielding

negative estimates when the true treatment effect is positive and of a large magnitude.
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I applymy estimator to the empirical question of Johannesen andZucman (2014) andMenkhoff

and Miethe (2019). The authors investigate wether bilateral treaties of automatic exchange of

information decreased deposits held in tax havens’ banks. I show that their results are robust

to correcting for staggered treatment and using non-linear estimator. I show that using a TWFE

PPML estimator in their set-up provides an lower treatment effect estimate, which can be ratio-

nalized by the fact that it aggregates differently the strong heterogeneity in treaties effects ac-

cross country pairs. My proposed estimator recover a close estimate, showing that eventhough

the treaties on average decreased deposits held offshore in tax havens, the average volume of

deposits held in tax havens changed by a lower magnitude. Furthermore, by applying the pro-

posed estimator to the empirical question of cross-border deposit behavior in response to au-

tomatic exchange of information treaties, I showcase its practical relevance to answer empirical

questions.

This paper contributes to the understanding of multiplicative difference-in-differences mod-

els and the interpretation of semi-elasticities and provides a valuable tool for researchers grap-

pling with heterogeneous treatment effects and staggered treatment timings. In future research,

further exploration of the precision of this estimator would be valuable. In particular, derivat-

ing analytical formulas for the variance of estimated parameters would represent substantial

precision gains for empirical researchers.
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Appendix
A. Supplementary results

Heteroskedasticity bias Silva and Tenreyro (2006) explain that using log-OLS models to esti-

matemultiplicative economic relationshipwill produce biased estimates if there is heteroskedas-

ticity in the multiplicative error term driven by the explanatory variables.

Cohn et al. (2022) derivemore explicitely the relationship between patterns of heteroskedas-

ticity and the sign of the bias. They take the following multiplicative model as an illustration

case:

y = exβη

With x a covariate and η amultiplicative error termwith conditional expectation equal to one. If

x if normal with mean 0 and η is log-normal with standard deviation ση(x) = exp(δx), we have:

β̂OLS = β − δ

2

If the variance of the error term increases with x (δ>0), the estimate is downward biased, and

vice versa. If δ/β > 2, the estimate is of the wrong sign. Note that the distorsion of variance

linked to x must be big enough to generate this bias.

More generally, authors derive that:

∂E[log(y)|x]
∂xj

= βj + ∂E[log(η)|x]
∂xj

(42)

Maximum likelihood The TWFE PPML estimation bymaximum of log-likelihood implies the

following first order conditions: 

∑
i,t,Dit=1(yit − ŷit) = 0∑
i=j,t(yjt − ŷjt) = 0∑
i,t=l(yil − ŷil) = 0
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Table A1: Staggered setting - Simple example

E[Yit] i = A i = B

t = 1 exp(αA) exp(αB)

t = 2 exp(αA + β2 + δA2) exp(αB + β2)

t = 3 exp(αA + β3 + δA3) exp(αB + β3 + δB3)

Which translates in this system of equation in the simple case in table A1:

yA2 + yA3 + yB3 = exp(α̂A + β̂2 + δ̂) + exp(α̂A + β̂3 + δ̂) + exp(α̂B + β̂3 + δ̂)

yA1 + yA2 + yA3 = exp(α̂A) + exp(α̂A + β̂2 + δ̂) + exp(α̂A + β̂3 + δ̂)

yB1 + yB2 + yB3 = exp(α̂B) + exp(α̂B + β̂2) + exp(α̂B + β̂3 + δ̂)

yA1 + yB1 = exp(α̂A) + exp(α̂B)

yA2 + yB2 = exp(α̂A + β̂2 + δ̂) + exp(α̂B + β̂2)

yA3 + yB3 = exp(α̂A + β̂3 + δ̂) + exp(α̂B + β̂3 + δ̂)

This yields: 

exp(β̂2 + δ̂) = YA2
exp(α̂A)

exp(α̂A) = (yA1+yA3)×(yA1+yB1)
yA1+yB1+yA3+yB3

exp(α̂B) = (yB1+yB3)×(yA1+yB1)
yA1+yB1+yA3+yB3

yA1 + yB1 = exp(α̂A) + exp(α̂B)

yA2 + yB2 = exp(α̂A + β̂2 + δ̂) + exp(α̂B + β̂2)

exp(β̂3) = yA3+yB3
(yA1+yB1)exp(δ̂)
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Quantity of interest If we have, heterogeneous treatment effect δA2 ̸= δA3 ̸= δB3. The quantity

of interest is then:

PTT = E[yit(1)|D = 1] − E[yit(0)|D = 1]
E[yit(0)|D = 1]

=
(1/3)

(
E(yA2(1)) + E(yA3(1)) + E(yB3(1))

)
− (1/3)

(
E(yA2(0)) + E(yA3(0)) + E(yB3(0))

)
(1/3)

(
E(yA2(0)) + E(yA3(0)) + E(yB3(0))

)
=

(
exp(αA + β2 + δA2) + exp(αA + β3 + δA3) + exp(αB + β3 + δB3)

)
(
exp(αA + β2) + exp(αA + β3) + exp(αB + β3)

)
−

(
exp(αA + β2) + exp(αA + β3) + exp(αB + β3)

)
(
exp(αA + β2) + exp(αA + β3) + exp(αB + β3)

)
=

∑
i,t,Dit=1

E(yit(0))∑
i,t,Dit=1 E(yit(0))

(
exp(δit) − 1

)
=

∑
i,t,Dit=1

ωit

(
exp(δit) − 1

)
(43)

Equivalence of the imputation and saturated approaches Wooldridge (2023) proposes to re-

cover estimates of ATTs in level which converges to τrs = yrs(1)−yrs(0) by predicting the average

partial effect of the treatment variableDit over the desired treated sample, evaluated for the right

value of cohort and time dummies. For time period and cohorts r, s, it computes:

τ̂inter,rs =E(ŷ|Dit = 1, gis = 1, fst = 1, ∀(k, l) ̸= (r, s) gik = 0; flt = 0)

− E(ŷ|Dit = 0, gis = 1, fst = 1, ∀(k, l) ̸= (r, s) gik = 0; flt = 0)

=N−1
rs

N∑
i=1

Dirs[exp(α̂i + β̂t + δ̂rs) − exp(α̂i + β̂t)]

With Nrs the number of observations for cohort r at time s and Dirs an indicator variable if the

observation belongs to cohort r observed at time s. Again, I can re-write the model to compute

the average partial effect across the entire treated sample with 1{t − r = l} to get the ATT l time

periods after treatment:

τ̂inter,rl = N−1
rl

N∑
i=1

Dirl[exp(α̂i + β̂t + δ̂rl) − exp(α̂i + β̂t)] (44)

Interestingly, Wooldridge (2023) notes that this quantity is numerically equivalent to the

imputation estimator from equation (36) on the same sample. It also has the advantage to have

known analytical expressions for standard errors. As in the previously section, I propose to
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scale this quantity by the predicted counterfactual outcome in the absence of treatment on the

same subsample:

R̂oRinter = τ̂inter∑
i∈ω1 ŷigt(0)

= τ̂imput∑
i∈ω1 ŷigt(0)

= R̂oRimput (45)

In the case with group specific parallel trends, the fully saturated model should write:

E[yipt|giq, ..., giT ] = exp
[ T∑

g=q

βggig +
T∑

s=2
γsfst +

P∑
p=1

1{c = p}κp +
P∑

p=1

T∑
s=2

(fst × 1{c = p})πpt

+
T∑

g=q

T −r∑
l=0

(Dit × gig × 1{t − g = l})δgl

+
P∑

p=1

T∑
g=q

T −r∑
l=0

1{c = p} × (Dit × gig × 1{t − g = l})ζpgl

+ αi + βct

]
Coefficients γs and πpt control for the drug-specific parallel trend. Coefficients δgs and ζpgs con-

trol for the full heterogeneity of the treatment effect, by cohort, drugs and time. Variables

gig, fst,1{c = s},1{c = s} × fst are dropped because they are colinear with fixed effects αi

and βct, and we are left with the model to estimate:

E[Yipt|giq, ..., giT ] = exp
[ T∑

g=q

T −r∑
l=0

(Dit × gig × 1{t − g = l})δgl

+
P∑

p=1

T∑
g=q

T −r∑
l=0

1{c = p} × (Dit × gig × 1{t − g = l})ζpgl + αi + βct

] (46)

The average treatment effect ATTinter is estimated as in the simple case, by predicting the treate-

ment average partial effect on the treated sample. As before, the proportional treatment effect

estimate is:

R̂oRinter = τ̂inter∑
i∈ω1 ŷigt(0)
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B. Simulations

Figure B1: Simulations: density
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Note: Case 1: No heteroskedasticity function of treatment status, no individual treatment effect heterogeneity. Case 2: Heteroskedasticity

function of treatment status, no individual treatment effect heterogeneity. Case 3: No heteroskedasticity function of treatment status, individual

treatment effect heterogeneity. Case 4: Heteroskedasticity function of treatment status, no individual treatment effect heterogeneity. Robust

log-OLS from Borusyak et al. (2024).
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Figure B2: Case 1: Event study
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Note: 95% confidence intervals. Case 1: No heteroskedasticity function of treatment status, no individual treatment effect heterogeneity. To

ease the derivation of confidence intervals, I plot log(P T T + 1) for each estimator.
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Figure B3: Case 2: Event study

0

.5

1
Co

ef
fic

ie
nt

-5 -4 -3 -2 -1 0 1 2 3 4 5
 

True RoR Av. true par
Imputation/Interaction Aggregation
TWFE OLS TWFE PPML

Note: 95% confidence intervals. Case 2: Heteroskedasticity function of treatment status, no individual treatment effect heterogeneity. To ease

the derivation of confidence intervals, I plot log(P T T + 1) for each estimator.

Figure B4: Case 3: Event study

0

.5

1

1.5

2

Co
ef

fic
ie

nt

-5 -4 -3 -2 -1 0 1 2 3 4 5
 

True RoR Av. true par
Imputation/Interaction Aggregation
TWFE OLS TWFE PPML

Note: 95% confidence intervals. Case 3: No heteroskedasticity function of treatment status, individual treatment effect heterogeneity. To ease

the derivation of confidence intervals, I plot log(P T T + 1) for each estimator.
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A C. Application

Figure C1: Interaction coefficients (Menkhoff and Miethe, 2019)
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Note: Colors in the legend correspond to the different treated cohorts. Each dot correspond to a coefficient of the interaction from the aggre-

gation estimator.

Table C1 presents the replication results of Johannesen and Zucman (2014), which includes

TIEAs, new double tax conventions (DTCs) and domestic legislation changes in tax havens that

enable information exchange through existing treaties. The treatment definition is less conser-

vative than Menkhoff and Miethe (2019), and their objective was to evaluate all legal changes

endorsed by the OECD that could have generated a decrease in bank secrecy.

Following the author’s methodology in column (1), on average, a legl change in banking

secrecy reduced deposits held in the partner tax havens by 12.4%.10 This treatment effect is lower

than the one estimated by Menkhoff andMiethe (2019), because the treatment definition is less

conservative due to available information at the time of the study. In column (2), removing

the few country-pairs that are always treated, the results remain, but slightly less precise. In

column (3), the estimator from Borusyak et al. (2024) recovers an effect is slightly bigger than

before andmore precise. In column (4), the aggregation estimator used in Nagengast and Yotov
10(exp(−0.133) − 1) × 100 ≈ −12.4
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(2023) estimates that the signature of a treaty reduces by 12.3% the deposit held in a partner tax

haven.11

In column (5), the TWFE PPML estimate is close to zero and not statistically significant.

Interpreting the results, the signature of bilateral treaties of automatic exchange of information

did not reduce the average volume of deposits held in tax havens. Column (6) implements my

proposed estimator and recovers a result close to column (4). Column (3) indicates that there

is a negative effect of legal changes regarding bank secrecy on deposits in tax havens on average

across country pairs, whereas column (6) indicates that the average volume of deposits held in

tax havens was not reduced by these OECD endorsed legal changes in the sample. Figure C2

decomposes the cohort-time treatment effects of the non-linear model.

Table C1: Staggered treatment robustness: Static estimator

Linear estimators Non-linear estimators

TWFE OLS

(replication)

TWFE OLS Borusyak

et al. (2024)

Aggregation TWFE

PPML

Imputation

(1) (2) (3) (4) (5) (6)

Coef -0.133** -0.129* -0.158*** -0.131** 0.042 0.057

S.e. (0.061) (0.061) (0.054) (0.065) (0.067) (0.073)

N 16523 16430 16430 16430 16430 16430

Control group All Never treated & Not yet treated

Country-pair FE Yes Yes Yes Yes Yes Yes

Time FE Yes Yes Yes Yes Yes Yes

Column (1): Replication of Johannesen and Zucman (2014) using data from Menkhoff and Miethe

(2019), differences with original results can arise from differences in underlying data. Standard errors

adjusted for clustering by country-pairs. Standard errors for the imputation and aggregation estimators

are computed through 500 bootstrap replications. No control variables included.

11(exp(−0.131) − 1) × 100 ≈ −12.3
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Figure C2: Interaction coefficients Johannesen and Zucman (2014)
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Note: Colors in the legend correspond to the different treated cohorts. Each dot correspond to a coefficient of the interaction from the aggre-

gation estimator.
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