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Abstract: This paper develops a simple business-cycle model in which financial shocks have large

macroeconomic effects when private agents are gradually learning their uncertain environment. When

agents update their beliefs about the parameters that govern the unobserved process driving financial

shocks to the leverage ratio, the responses of output and other aggregates under adaptive learning are

significantly larger than under rational expectations. In our benchmark case calibrated using US data

on leverage, debt-to-GDP and land value-to-GDP ratios for 1996Q1-2008Q4, learning amplifies leverage

shocks by a factor of about three, relative to rational expectations. When fed with actual leverage

innovations observed over that period, the learning model predicts a sizeable recession in 2008-10, while

its rational expectations counterpart predicts a counter-factual expansion. In addition, we show that

procyclical leverage reinforces the amplification due to learning and, accordingly, that macro-prudential

policies enforcing countercyclical leverage dampen the effects of leverage shocks.
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1 Introduction

Whether or not banks and other financial institutions, policy-makers, households and

firms relied on a decent approximation of the “true” probability distribution prior to

the 2007-08 financial collapse is a key question to address if one is to understand the

Great Recession. On the theoretical side, answering such a question involves relaxing the

assumption that the data-generating process is known when agents make decisions in an

economy that is subject to random disturbances (see Woodford [42] for a recent survey).

This issue has been recently tackled by Hebert, Fuster and Laibson [17], who show that

asset price booms and busts are more satisfactorily explained when forecasters use simple

models that typically underestimate mean-reversion and overestimate the persistence of

the impact of shocks. Ilut and Schneider [24] show that shocks driving the unknown

mean level of productivity contribute significantly, under ambiguity aversion, to business

cycles. In both contributions, the key assumption is that there is uncertainty about the

“true” parameters (e.g. the mean and the autocorrelation) governing the random shocks

that affect the economy.

In this paper, we contribute to this strand of literature by introducing statistical learn-

ing. More specifically, we examine how decision-makers get and revise their beliefs about

the parameters of the stochastic process governing financial shocks as new data arrive,

following Marcet and Sargent [34] and Evans and Honkapohja [15] (see also the related

discussion in Evans [14]). This is similar, in spirit, to Hebert, Fuster and Laibson [17],

Ilut and Schneider [24], since we assume that agents do not know these parameters. The

key dimension we add is that agents may learn their economic environment by estimating

the unknown parameters and by updating each period such estimates. In that sense, this

paper follows closely Adam, Kuang and Marcet [1], Boz and Mendoza [5], Gelain and

Lansing [20] by emphasizing how financial shocks affect asset prices, but it also differs by
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measuring to what extent financial shocks help explain the fall in output and investment

observed over the Great Recession period.

In a simple business-cycle model with collateral constraints, we show that dynamics

under learning can differ significantly from the dynamics under rational expectations.

More precisely, we find that the amplification of financial shocks is particularly large

when agents overestimate either the persistence of financial shocks or the long-run level

of financial conditions. We then simulate the model using actual financial innovations

and we report that our learning model delivers a sizeable recession in 2008-2010, in

contrast to the rational expectations that predicts a counterfactual expansion when sub-

jected with the same financial shocks. The key random variable in our analysis is the

leverage ratio defined by how much one can borrow out of the land market value. We

show that when agents update their beliefs about the parameters that govern both the

dynamics of endogenous variables as well as the unobserved process driving shocks to

the leverage ratio, the responses of output and other aggregates under adaptive learning

are significantly larger than under rational expectations. More specifically, we compare

two settings: (i) the model with (full information) rational expectations, in which agents

know the parameters governing the VAR(1) process governing the behavior of the econ-

omy; (ii) the model with learning, in which agents do not know the “true” parameters

of the VAR(1) model and update their estimates as new data arrive.

Our results can be anticipated by looking at the panels in Figure 1. Panel a) of Fig-

ure 1 plots the US quarterly households’ leverage data (provided by Boz and Mendoza

[5]) over the period 1996Q1-2010Q1 that covers the latest boom-bust behavior in the

housing market. As explained in more details in Section 4, we take out of the raw data

the endogenous component of leverage that has been (moderately) elastic to land prices

prior to 2008 (Mian and Sufi [35]) and we estimate an AR(1) process on the residual

(exogenous) component. Panel b) of Figure 1 reports the autocorrelation coefficient of
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Figure 1: in Panel a) US Household Leverage Ratio 1996Q1-2010Q1 (Source: Boz and

Mendoza [5]); in Panel b) Model Estimate of Leverage Autocorrelation 1996Q1-2010Q1;
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the exogenous leverage component that is estimated under learning. The autocorrelation

coefficient graphed in panel b) is obtained through constant-gain recursive estimation in

real-time, as new data is collected. Panel b) shows that when confronted with the data

in panel a), learning agents think of the AR(1) leverage process as moving towards unit

root at the end of the period. Essentially, the level of leverage shows a rapid increase

after 2006, when the land price stops expanding and starts falling - panel a) - and this

also when learning agents start increasing their estimate of autocorrelation, which ends

up being very close to one in the last two quarters of 2008. As a result, both the observed

level of leverage and its estimated persistence peak at the same time, in 2008Q4. On the

other hand, the rational expectations estimate, obtained by ordinary least squares over

the whole sample period, is lower than its learning counterpart over the period shown

in panel b) and it is around 0.976. Because the learning model generates the estimate

shown in panel b) when fed with the actual leverage innovations, it predicts that the

impact of the negative shock to leverage observed in 2008Q4 is three times bigger than

under rational expectations. When believed under learning to be close to permanent,

financial shocks have a larger effect on the economy, compared to rational expectations.

Our main findings are derived in a model that is a simple variant of Kiyotaki and

Moore [28] based on Kocherlakota [29], in which it is known that little amplification is

expected under rational expectations. We focus on financial shocks that drive up and

down the leverage ratio, which according to the data in panel a) of Figure 1 are very per-

sistent. We first perform two theoretical experiments. The first one assumes that agents

know the economy’s steady state and, in particular, the mean level of leverage but not its

autocorrelation, which is allowed to be time-varying. We calibrate the model using data

on leverage, debt-to-GDP and land value-to-GDP ratios for the period 1996Q1-2008Q4

and we subject the economy to the large negative shock to leverage that was observed

in 2008Q4 (see panel a) in Figure 1) under the assumption that learning agents overes-
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timate the autocorrelation of the leverage shock, which is believed to be close to unity

(see panel b) in Figure 1). We compare the responses of the linearized economy under

adaptive learning and under rational expectations. Our typical sample of results shows

that learning amplifies leverage shocks by a factor larger than three (see Figure 2). More

precisely, our model predicts, when fed with the negative leverage shock of about −5%

observed in 2008Q4, that output falls by about 0.8%, which is roughly by how much US

GDP dropped at that time. In addition, aggregate consumption and the capital stock

fall by about 1.1% and 1.8%, respectively. Under rational expectations, however, out-

put drops only by about 0.25% while the responses of consumption and investment are

divided by more than two at impact. Consumption and investment go down by a signifi-

cantly larger margin under learning because de-leveraging is more severe: land price and

debt are much more depressed after the negative leverage shock hits when its persistence

is overestimated by agents who are constantly learning their environment and, because

of recent past data, temporarily pessimistic. We next show that the magnitude of the

consequent recession may in part be attributed to the high level of leverage (and the cor-

respondingly high level of the debt-to-GDP ratio) observed in 2008Q4. When the same

negative leverage shock occurs in the model calibrated using 1996Q1 data, when leverage

was much lower, the impact on output’s response is reduced by about two thirds. In this

sense, our model points at the obvious fact that financial shocks to leverage originate

larger aggregate volatility in economies that are more levered.

In addition, we also ask whether procyclical leverage may act as an aggravating fac-

tor and our answer is positive. The assumption that households’ leverage responds to

land price is motivated by the recent evidence provided by Mian and Sufi [35] (see also

the discussion in Midrigan and Philippon [36]). The counter-factual experiment with

countercyclical leverage shows dampened effects of leverage shocks, with responses of

aggregate variables under learning that are close to their rational expectations coun-
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terpart. One possible interpretation of this finding is that macro-prudential policies

enforcing countercyclical leverage have potential stabilizing effects on the economy in

the face of financial shocks, at small cost provided that non-distortionary policies are

implemented (e.g. through regulation).

Our second theoretical experiment is carried out under the assumption that learning

agents do not know the steady state of the economy and, in particular, that they do not

know the long-run level of leverage. This is our preferred model in the sense that it is ar-

guably a more realistic description of the difficulties that forecasting agents/econometricians

face when trying to figure out the parameters governing the data generating process. In

such a setting, we again feed the model with the negative leverage shock of about −5%

observed in 2008Q4 and we show that the responses of the economy are further amplified

under learning when agents’ belief about the mean level of leverage is overestimated (see

Figure 6). Summing up the results from our two model experiments, our main conclusion

is that in a world where agents overestimate the persistence of financial shocks and/or

the mean level of leverage, learning amplifies the disturbances to borrowing capacity.

We next derive our set of quantitative results about the model-generated recession for

2008-10. In line with the literature (see Kiyotaki, Michaelides, Nikolov [27], Liu, Wang,

Zha [32], Justiniano, Primiceri, Tombalotti [26], among others), we show that replicating

the observed boom-bust pattern of land prices over the 2000s requires another source of

shocks in addition to leverage shocks. We introduce a land price shock that we calibrate

to ensure that the behavior of the endogenous land price matches its observed counter-

part. We also feed the model with the actual innovations to leverage and show that the

model predicts a sizeable fraction of the output fall observed during the Great Recession.

More precisely, we do that in a setting where agents do not know the steady state and

the autocorrelation matrix in the VAR representation of the economy, that they have

to estimate using constant-gain learning. When we let agents revise their estimates in
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reaction to the actual leverage innovations observed up to 2008, the learning model pre-

dicts a boom that is followed by a sizeable recession in 2008-10 (see Figure 10). In sharp

contrast, in the 2000s the rational expectations model predicts a long recession that is

followed by an expansion, which are both at odds with the data.

Related Literature: Our paper connects to several strands of the literature. The

macroeconomic importance of financial shocks has recently been emphasized by Jer-

mann and Quadrini [25], among others, and our paper contributes to this literature

about credit shocks by showing how learning matters. Closest to ours are the papers by

Adam, Kuang and Marcet [1], who focus on exogenous interest rate changes, and by Boz

and Mendoza [5], who show how changes in the leverage ratio have large macroeconomic

effects under Bayesian learning and Markov regime switching.1 As in Boz and Mendoza

[5], we focus on leverage shocks but our setting is different. First, our model with adap-

tive learning is easily amenable to simulations and we solve for equilibria through usual

linearization techniques. Because we assume that agents are adaptively learning through

VAR estimation, it is possible to enrich the model by adding capital accumulation and

endogenous production. Most importantly, our model predicts large output drops when

the economy is hit by negative leverage shocks. In sharp contrast, absent TFP shocks,

output remains constant after a financial regime switch in Boz and Mendoza [5]. In ad-

dition, we show that our results are robust to the introduction of heterogeneous agents

and endogenous interest rate. Since in such setting the interest rate is endogenously

procyclical, it could completely defeat the effect of an increase in credit supply even

under learning. Our robustness analysis makes clear that this is not the case and that

amplification due to learning does not rely upon the small-open economy assumption,

an issue that is addressed neither in Adam, Kuang and Marcet [1] nor in Boz and Men-

1In independent research, Kuang [31] introduces learning in the original model of Kiyotaki and Moore

[28] with risk neutrality and linear technologies. In contrast, utility and production functions are assumed

to be concave in this paper.
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doza [5]. Our paper also relates to some of the insights in Howitt [21], Hebert, Fuster

and Laibson [17, 18]. Contrary to Hebert, Fuster and Laibson [17, 18] who assume that

agents use a misspecified model, in our case the overestimated persistence of shocks arises

endogenously under adaptive learning when agents face the sequence of financial innova-

tions that was observed in the run-up to the crisis.2 In addition, our paper stresses that

endogenous changes in the beliefs about the long-run level of leverage may also matter

for explaining why shocks get amplified under adaptive learning. This is also where our

paper departs from Ilut and Schneider [24], who do not consider learning in their setting

with exogenously driven ambiguity about TFP shocks.

In the literature, the idea that procyclical leverage has adverse consequences on the

macroeconomy is forthfully developed in Geanakoplos [19] (see also Cao [7]). Although

our formulation of elastic leverage is derived in an admittedly simple setup, it allows us

to examine its effect in a full-fledged macroeconomic setting. Last but not least, the no-

tion that learning is important in business-cycle models when some change in the shock

process occurs has been discussed by, e.g., Bullard and Duffy [6] and Williams [41]. More

recently, Eusepi and Preston [13] have shown that learning matters in a standard RBC

model when the economy is hit by shocks to productivity growth (see also the related

papers by Edge, Laubach, Williams [12], Huang, Liu, Zha [22]). Our paper adds to this

literature by focusing on financial shocks under collateral constraints. As mentioned be-

fore, part of the paper’s motivation also comes from the growing micro-evidence about

the importance of households’ and firms’ leverage for understanding consumption and

investment behaviors (e.g. Mian and Sufi [35], Chaney, Sraer and Thesmar [10]).

The paper is organized as follows. Section 2 presents the model and derives its ratio-

nal expectations equilibria. Section 3 relaxes the assumption that agents form rational

expectations in the short run and it shows how financial shocks are amplified under learn-

2Along this dimension, we address some concerns raised by Evans [14].
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ing when agents update their estimates about the parameters of the stochastic process

driving financial shocks. Section 4 shows that the model with learning predicts a size-

able recession in 2008-10 while its rational expectations counterpart does not. Section 5

gathers concluding remarks and all proofs are exposed in the appendices.

2 The Leveraged Economy with Financial Shocks

2.1 Model

The model is essentially an extension of Kocherlakota’s [29] to partial capital depreciation

and adaptive learning. A representative agent solves:

maxE0

∞∑
t=0

βt
C1−σ
t − 1

1− σ
(1)

where Ct ≥ 0 is consumption and σ ≥ 0 denotes relative risk aversion, subject to both

the budget constraint:

Ct +Kt+1 − (1− δ)Kt + TtQt(Lt+1 − Lt) + (1 +R)Bt = Bt+1 +AKα
t L

γ
t (2)

and the collateral constraint:

Θ̃tEt[Qt+1]Lt+1 ≥ (1 +R)Bt+1 (3)

where Kt+1, Lt+1 and Bt+1 are the capital stock, the land stock and the amount of new

borrowing, respectively, all chosen in period t, Qt is the land price, R is the exogenous

interest rate, and A is the total factor productivity (TFP thereafter). In the model,

leverage Θ̃t is subject to random shocks whereas both the interest rate and TFP are

constant over time.3 As we focus on financial shocks, we ignore TFP disturbances. We

3In Section 3.3, we show that our main results are robust to the introduction to heterogeneous agents

and endogenous interest rate.
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also introduce a land price shock T , essentially because the model with only leverage

disturbances can hardly replicate the land price behavior that has been observed in the

2000s. In line with the literature (see e.g. Kiyotaki, Michaelides, Nikolov [27], Liu, Wang,

Zha [32], Justiniano, Primiceri, Tombalotti [26] among others), we find that the model

with both shocks does a better job along this dimension. Although the formulation we

use is rather agnostic, it is easy to show that it is essentially equivalent to land preference

shocks or other “political” (e.g. tax) shocks that push the demand for land and the land

price up or down. We assume that the land price shock process is Tt = T 1−ρτ
t−1 Ψt and,

absent shocks, that it does not cause any distortions in the steady state. We present

first the results obtained under the collateral constraint (3), which follows Kiyotaki and

Moore [28]. However, quantitatively similar results hold under the margin requirement

timing stressed in Aiyagari and Gertler [3] (see Section 3.3 for robustness analysis).

Denoting Λt and Φt the Lagrange multipliers of constraints (2) and (3), respectively,

the borrower’s first-order conditions with respect to consumption, land stock, capital

stock, and loan are given by:

C−σt = Λt (4)

TtQtΛt = βEt[Tt+1Qt+1Λt+1] + βγEt[Λt+1Yt+1/Lt+1] + ΦtΘ̃tEt[Qt+1] (5)

Λt = βEt[Λt+1(αYt+1/Kt+1 + 1− δ)] (6)

Λt = β(1 +R)Et[Λt+1] + (1 +R)Φt. (7)

Consistent with the “shadow price learning” approach proposed by Evans and Mc

Gough [16], we keep track of the Lagrange multipliers in our Euler-equation learning

procedure. Although the analysis of nonlinear decision rules for control variables is

beyond the scope of this paper, we conjecture that Euler-equation learning is in our

setting similar to shadow-price learning when applied to the linearized model, similarly

to section 6 of Evans and McGough [16] in which is studied a simpler Ramsey economy.
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We also incorporate into the model the feature that leverage responds to changes in

the land price, which accords with the US micro data evidence documented by Mian and

Sufi [35]. More precisely, we posit that:

Θ̃t ≡ Θt

{
Et[Qt+1]

Q

}ε
(8)

where Q is the steady-state value of land price and the log of Θt follows an AR(1) pro-

cess, that is, Θt = Θ
1−ρθΘρθ

t−1Ξt. In Appendix A.1, we show how (8) can be derived

in a simple setting with ex-post moral hazard and costly monitoring. One can think of

(8) as a decomposition of the leverage into an exogenous component Θt and an endoge-

nous component {Et[Qt+1]/Q}ε. While our qualitative results do not depend on this

assumption, we set the parameter ε to a positive value in our benchmark calibration to

be described later, for two main reasons: to be consistent with the evidence reported in

Mian and Sufi [35] and to examine the predictions of our model under the counterfactual

assumption that leverage is countercyclical.

In what follows, we assume that Θt and Tt are subject to the innovations Ξt and Ψt.

We compare two cases regarding what agents know about the data generating process of

the economy:

(i) rational expectations (with full information): agents know with certainty all the struc-

tural parameters of the model including “true” values of ρτ , ρθ and Θ,

(ii) learning (with incomplete information): the exact structure of the economy and,

importantly, ρτ , ρθ and Θ are unknown and agents have to learn and estimate unknown

parameters based on available data. We consider two experiments which are reported

in Sections 3.1 and 3.4. In Section 3.1, we first assume that the steady state is known

but that learning agents do not know and have to estimate, among other parameters,

the persistence parameter ρθ. Next, in Section 3.4, we assume that agents are uncertain

about the steady state, including level of leverage Θ, as well. Before turning to that, we

present the benchmark case of rational expectations equilibria.
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2.2 Rational Expectations Equilibria

A rational expectations competitive equilibrium is a sequence of positive prices {Qt}∞t=0

and positive allocations {Ct,Kt+1, Lt+1, Bt+1}∞t=0 such that, given the exogenous se-

quence {Θt, Tt}∞t=0 of the leverage and price shocks, and the exogenous interest rate

R ≥ 0:

(i) {Ct,Kt+1, Lt+1, Bt+1}∞t=0 satisfies the first-order conditions (4)-(7), the transver-

sality conditions, limt→∞ β
tΛtLt+1 = limt→∞ β

tΛtKt+1 = 0, and the complementar-

ity slackness condition Φt

[
Θ̃tEt[Qt+1]Lt+1 − (1 +R)Bt+1

]
= 0 for all t ≥ 0, where

Θ̃t ≡ Θt{Et[Qt+1]/Q}ε, given the initial endowments L0 ≥ 0, B0 ≥ 0,K0 ≥ 0;

(ii) The good and land markets clear for all t, that is, Ct+Kt+1−(1−δ)Kt+(1+R)Bt =

Bt+1 +AtK
α
t and Lt = 1, respectively.

The above definition assumes that the interest rate is exogenous. Therefore, a natural

interpretation of the model is that it represents a small, open economy. However, in

Section 3.3 we show that our main results are robust to the introduction of heteroge-

neous agents and endogenous interest rate, in a closed-economy variant of Iacoviello’s

[23] model. The details of such an extension are presented in Appendix A.3. As our fo-

cus is on how borrowers adaptively learn how the economy settles after financial shocks,

we abstract both from TFP shocks and from further details regarding the lender’s side,

and we focus on the small-open-economy setting as in Adam, Kuang and Marcet [1],

Boz and Mendoza [5]. However, our contribution with respect to the latter is to show

that amplification due to learning does not critically depend on the interest rate being

exogenous.

There is a unique (deterministic) stationary equilibrium such that the credit constraint

(3) binds, provided that the interest factor 1 + R ≡ 1/µ is such that µ ∈ (β, 1), that

is, if lenders are more patient than borrowers. This follows from the steady-state ver-
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sion of (7), Φ = Λ(µ − β) > 0. The steady state is characterized by the following

ratios, that fully determine the linearized dynamics around the steady state. From (5)

and (6), it follows that the land price-to-GDP and capital-to-GDP ratios are given by

Q/Y = γβ/[1− β −Θ(µ− β)] and K/Y = αβ/[1− β(1− δ)], respectively. Finally, (3)

yields the debt-to-GDP ratio B/Y = µΘQ/Y and (2) yields the consumption-to-GDP

ratio C/Y = 1− δK/Y − (1/µ− 1)(B/Y ).

Appendix A.2 provides a log-linearized version in levels of the set of equations (2)-(7)

defining, together with (8) and the laws of motion Θt = Θ
1−ρθΘρθ

t−1Ξt and Tt = T 1−ρτ
t−1 Ψt,

intertemporal equilibria. The linearized expectational system can be written as:

Xt = AXt−1 + BEt−1[Xt] + CEt[Xt+1] + N + Dξt + Fψt (9)

where X ′t ≡ (ct, qt, λt, φt, bt, kt, θt, τt); ξt and ψt are exogenous shocks; and all variables

in lowercase letters denote variables in log (e.g. kt ≡ log(Kt)). The derivation and the

expressions of the 8-by-8 matrices A, B, C, D, F, N as functions of parameters are given

in Appendix A.2.

Anticipating our results on E-stability, we now use the fact that the linearized rational

expectations equilibrium can be obtained as the unique E-stable Minimal-State-Variable

solution (MSV thereafter) such that

Et−1[Xt] = Hre + MreXt−1, (10)

where Mre and Hre solve

M = [I8 −CM]−1[A + BM], (11)

H = [I8 −CMre]
−1

[BH + CH + N], (12)

and I8 is the 8-by-8 identity matrix.

It is important to underline that all parameters, including both the autocorrelation of

the leverage shock process, that is, ρθ, and the leverage level, that is Θ, are known
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under rational expectations. In contrast, the next sections relax such an assumption and

assume instead that agents have to form estimates about ρθ and Θ using the available

data.

3 Adaptive Learning and Financial Shocks

Following Marcet and Sargent [34] and Evans and Honkapohja [15], we now relax the

assumption that agents form rational expectations in the short-run. We first assume

that the steady state of the economy is known, which implies that the steady state level

of leverage is a common knowledge. However, the parameters governing the dynamics

of the economy are not known. In particular, ρθ is not known with certainty by agents.

We can still use the linearized dynamic system in log levels, which is now:

Xt = AXt−1 + BE∗t−1[Xt] + CE∗t [Xt+1] + N + Dξt + Fψt (13)

where the operator E∗t indicates expectations that are taken using all information avail-

able at t but that are possibly nonrational. More precisely, agents behave as econome-

tricians by embracing the following perceived law of motion (PLM thereafter):

Xt = MXt−1 + H + Dξt + Fψt (14)

which agents use for forecasting. In particular, (14) yields Et[Xt+1] = Mt−1Xt + Ht−1

and Et−1[Xt] = Mt−2Xt−1 + Ht−2. The actual law of motion (ALM thereafter) results

from combining (13) and (14) which gives:

[I8 −CMt−1]Xt = [A + BMt−2]Xt−1 + [BHt−2 + CHt−1 + N] + Dξt + Fψt. (15)

When M and H coincide with Mre and Hre (as derived in Section 2.2) then agents

hold rational expectations. However, beliefs captured in M and H may differ from
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rational expectations. Following Evans and Honkapohja [15], we assume they are updated

in real time using recursive learning algorithms which means that the belief matrices M

and H are time-varying. The coefficients are updated according to

Ωt = Ωt−1 + νt(Xt −Ωt−1Zt−1)Z
′
t−1R

−1
t (16)

Rt = Rt−1 + νt(Zt−1Z
′
t−1 −Rt−1) (17)

where Z ′t = [1, X ′t] and Ω = [H M]. R is the estimate of the variance-covariance

matrix and νt is the gain sequence (which equals 1/t under ordinary least squares and ν

under constant gain, respectively OLS and CG thereafter). One difference with rational

expectations that is key to our results is that agents’ estimates may differ from true

parameter values, that is (Mt,Ht) 6= (Mre,Hre). This imply, for example, that agents

may overestimate the autocorrelation parameter ρθ (or overestimate the steady state

level of leverage Θ̄ as later explained, in Section 3.4).

The mapping from the PLM (14) into the ALM (15) is given by:

TM(M,H) = [I8 −CM]−1 [A + BM] (18)

TH(M,H) = [I8 −CM]−1 [BH + CH + N] . (19)

Adapting Proposition 10.3 from Evans and Honkapohja [15], we check that all eigen-

values of DTM(M,H) and DTH(M,H) have real parts less than 1 when evaluated at

the fixed-point solutions of the T -map (18), that is, M = Mre and H = Hre. Using

the rules for vectorization, we get:

DTM(Mre,Hre) = ([I8 −CMre]
−1

[A + BMre])
′
⊗ [I8 −CMre]

−1
C

+ I8 ⊗ [I8 −CMre]
−1

B

DTH(Mre,Hre) = [I8 −CMre]
−1

[B + C].

We verify numerically that under parameterizations that we consider, the MSV solu-

tion is locally E-stable, that is, all eigenvalues of bothDTM(Mre,Hre) andDTH(Mre,Hre)
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lie within the interior of the unit circle. Because E-stability conditions hold in all simula-

tions that we report, we conjecture that the results of Evans and Honkapohja [15] about

convergence in distribution to the rational-expectations equilibrium for small enough gain

values apply as well in our setting. Since our purpose is not to establish convergence

results, we abstract from the analytical conditions stated in Evans and Honkapohja [15,

p.165], which turn out to be quite demanding. In practice, we numerically compute the

E-stable solutions by iterating the T-map (18)-(19), as described in Evans and Honkapo-

hja [15, p.232].

3.1 Learning the Persistence of Leverage Shocks

In this section, we show that learning amplifies leverage shocks when agents’ beliefs

about the model parameters are allowed to differ from rational expectations. In par-

ticular, we assume that learning agents incorrectly believe that ρθ is closer to one than

the “true” value. This is meant to capture the trend in leverage that is observed in the

run-up to the 2008Q4 crisis. On the other hand, we make our theoretical experiment

more transparent by subjecting the model to a single source of shock and we shut down

the land price shock, that is, Tt = 1 for all t.

The quarterly data on households’s debt, land holdings, land price and leverage we

use are borrowed from Boz and Mendoza [5]. The model is calibrated to deliver aver-

age values for leverage, debt-to-GDP and land value-to-GDP ratios observed over the

housing market “bubble” period 1996Q1-2008Q4, that is Θ ≈ 0.88, B/Y ≈ 0.52 and

QL/Y ≈ 0.59, see Table 1 for all parameter values. To calibrate those ratios, we fix

the quarterly interest rate to 1% (that is, µ = 0.99) and β = 0.98µ, consistently with

the literature on heterogeneous discount rates, e.g. Krusell and Smith [30], and then

pick the land share γ to target the land price-to-GDP ratio QL/Y ≈ 0.59. Setting the
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leverage mean level Θ ≈ 0.88 ensures that the debt-to-GDP is B/Y ≈ 0.52 as in the

data. Although leverage stationarity may appear as questionable for the 2006-09 period,

it is arguably not for longer periods in the data and also in theory. In addition, we

take the value ε = 0.5 from the estimates of Mian and Sufi [35, Table 2, column 6],

who regress leverage growth on house price growth.4 Finally, the standard deviation of

the innovations to leverage, that is, σξ, comes from the OLS estimate over the whole

sample period. In all the simulations reported below, we have checked numerically that

the borrowing constraint is always binding.

Table 1. Parameter Values (1996Q1-2008Q4)

µ β δ α γ Θ σ ε ν σξ

0.99 0.98µ 0.025 0.45 0.0075 0.88 1 0.5 0.013 0.034

The experiment that produces our first set of results is the following. We assume that

in the period preceding the financial collapse of 2008Q4, the agents in our model econ-

omy have learned that ρθ was close to one, reflecting the leverage trend that starts in the

early 1990s. This means that agents’ beliefs encapsulated in matrix M of the PLM (14)

reflect that ρθ ≈ 1. Then in 2008Q4 a large negative shock to leverage of about −5%

happens (see Figure 1). The (pseudo-)impulse response functions in Figure 2 report the

reaction of the economy’s aggregates under the assumptions that agents wrongly believe

that ρθ ≈ 0.998 whereas the true value is 0.976. Such a calibration is consistent with

both the CG and OLS estimates in 2008Q4 obtained from the data, as shown in panel

b) of Figure 1 (see also Figure 9 in Section 4). More precisely, panel b) in Figure 1

shows that ρθ ≈ 0.998 in 2008Q3, which is the value that learning agents use to forecast

2008Q4. To initialize the model, we simulate a million times the RE model calibrated

4The value we choose for ε implies, for instance, that a 10% increase in land price triggers a 5%

increase in leverage, which under our calibration would raise leverage from 0.88 to about 0.92.
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according to Table 1, using Mre, Hre, and we estimate the variance-covariance matrix

R that is used as initial condition to generate the impulse responses under learning.5

The blue dotted line in Figure 2 represents the RE equilibrium with ρθ = 0.976. The

solid red curve in Figure 2 occurs when agents gradually learn using (16)-(17) under

the initial belief that ρθ = 0.998, with the true value being 0.976. Although Figure 2

assumes CG learning with ν = 0.013, similar results would occur with values that belong

to (0.005, 0.04) (which would imply similar effects at impact but slower or faster recov-

ery).6 Such a low value for the gain parameter implies that learning agents regress past

data using a forgetting half-length of about 13 years, that is, data older than 13 years

are weighted less than 50%.

Figure 2 shows that the negative leverage shock is significantly amplified under learn-

ing. In all figures, the numbers reported on the y-axis are in percentage terms. For

example, Figure 2 reports that the output fall in period two is about −0.82% under

learning and about −0.27% under rational expectations. In particular, the impact on

output and capital is roughly three times larger and the consumption drop is multiplied

by about four compared to the rational expectations outcome. This follows from the

fact that deleveraging is much more severe under learning: the fall in land price is more

than four times larger and the debt decrease is multiplied by more than two compared

to RE.7

5The learning model is stable enough that in this excersise we do not need to make use of any

projection facility.
6Our chosen value for the gain parameter is conservative, as it falls within the lower range of estimates

reported in Branch and Evans [4], Chakraborty and Evans [9], Milani [37, 38], and it is consistent with

the estimates of Malmendier and Nagel [33] for younger generations. Although there seems to be no

empirical estimate of the gain parameter corresponding to actual forecasts of housing or land prices, the

dataset exploited in Pancrazi and Pietrunti [39] could in principle be used to that purpose.
7In Figure 2, debt falls by much more than output. This implies that the debt-to-GDP ratio - a

common definition of aggregate leverage - falls by a large amount as well.
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In summary, because agents incorrectly believe that the negative leverage shock will

be very persistent, they expect a much tighter future borrowing constraint leading to

a much larger fall in land price and than under rational expectations. Agents are pes-

simistic due to incorrect beliefs and this pessimism depresses consumption, investment

and output much more than under rational expectations.
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Figure 2: Responses (in Percentage Deviations from Steady State) to a −5% Leverage

Shock under Learning (Red Solid Line) and Rational Expectations (Blue Dotted Line);

Parameter Values in Table 1.
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To measure how the leverage level matters for the response to a financial shock, we

now calibrate the model using data from the first quarter of 1996 and set Θ ≈ 0.73

(the other values are as in Table 1), which leads to B/Y ≈ 0.34 and QL/Y ≈ 0.48.

According to most measures, this corresponds to the starting point of the housing price

“bubble”. The lower level of leverage implies that both the debt-to-GDP and the land

value-to-GDP are correspondingly lower than their averages over the 1996Q1-2008Q4

period. Figure 3 replicates the same experiment as above, when a −5% shock to leverage

hits the economy and ρθ is believed to equal 0.998 while its true value is 0.976. Direct

comparison of Figures 2 and 3 reveals that higher leverage increases the effect of the
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Figure 3: Responses (in Percentage Deviations from Steady State) to a −5% Leverage

Shock (Learning: Red Solid Line; Rational Expectations: Blue Dotted Line) when

Θ = 0.73 (Other Parameter Values in Table 1)
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shock on aggregates by about 150% at impact under learning. In this sense, the larger

the level of leverage the deeper the recession that follows after a negative financial shock.8

8Output’s response and capital’s response are proportional so we report only the former and not the

latter.
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It is important to stress that the economy’s responses to a leverage shock are larger

under learning because the land price forecast interacts with the borrowing constraint.

To illustrate this fact, we now report the responses of a subset of the same variables

when the land price is assumed to be fixed in the borrowing constraint, that is, when (3)

is replaced by:

ΘtQLt+1 ≥ (1 +R)Bt+1 (20)

while it is allowed to respond according to the Euler condition (5). One possible interpre-

tation of (20) is that expected land price is predetermined and fixed at its steady-state

value when lenders evaluate the collateral value and decide how much to lend. Figure
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4 reports the responses of output and consumption, which are about the same under

learning and under rational expectations, in contrast to Figure 2. This unambiguously

shows that it is the interaction of land price expectations with the borrowing constraint

that generates our results under learning.

Figure 4: Responses (in Percentage Deviations from Steady State) to a −5% Leverage

Shock with Fixed Land Price (Learning: Red Solid Line; Rational Expectations: Blue

Dotted Line); Parameter Values in Table 1.
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3.2 Simple Macroprudential Policy

In this section, we show that countercyclical leverage dampens the impact of leverage

shocks under learning. We now ask the counter-factual question: what would be the

reaction of the economy to the same shock, under the same parameter values but with

the leverage being now mildly countercyclical?9 More precisely, we assume that ε = −0.5

while the other parameters are kept unchanged and set as in Table 1. The economy’s

responses are reported in Figure 5. The comparison of Figures 2 and 5 shows that

countercyclical leverage dampens by a significant margin the responses to financial shocks

and it brings learning dynamics closer to its rational expectations counterpart. As a

consequence, a much smaller recession follows a negative leverage shock: though agents

anticipate a too large deleveraging effect because they overestimate the persistence of

the adverse leverage shock, the land price fall now triggers an increase in countercyclical

leverage, which dampens the impact of the negative shock. In other words, the negative

shock to the exogenous component of leverage is now dampened by an increase of the

endogenous part, which is itself triggered by a fall in land price. As a consequence,

borrowing falls only moderately and the resulting recession is much smaller and similar

under learning and under RE.

9This feature could possibly be enforced by appropriate regulation of credit markets. Alternatively,

Appendix A.1 shows how it arises if government uses procyclical taxes.
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Figure 5: Responses (in Percentage Deviations from Steady State) to a −5% Leverage

Shock under Countercyclical Leverage (Learning: Red Solid Line; Rational

Expectations: Blue Dotted Line); ε = −0.5 and other Parameter Values in Table 1.
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3.3 Robustness Under Alternative Assumptions

To assess the robustness of the findings reported in Section 3.1, we now relax several

assumptions one by one. First, we depart from logarithmic utility and we allow risk

aversion (σ) to take on values that are larger or smaller than one. Second, we adopt

the timing assumption that is implied by the margin requirement interpretation of the

borrowing constraint (Aiyagari and Gertler [3]). That is, borrowing is limited to the

current market value of collateral, as opposed to tomorrow’s market value. In other

words, we replace both (3) by Θ̃tQtLt+1 ≥ (1+R)Bt+1 and (8) by Θ̃t ≡ Θt{Qt/Q}ε. We
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also relax the small-open economy assumption and introduce heterogeneous agents and

endogenous interest rate. Finally, we examine the impact of assuming elastic leverage on

our results.

In Table 2, we report the output amplification that obtains under learning, as a fraction

of that under rational expectations. For example, the impact of a −5% leverage shock

on output’s deviation (from its steady-state value, in percentage terms) is about −0.82%

under learning and −0.27% under RE (see Figure 2) when parameters are set according

to Table 1. Therefore, the first column of Table 2 reports that the ratio is about 3.09 ≈

0.82/0.27. Similarly, the second and third columns of Table 2 report such a ratio when

all parameter values are set according to Table 1, except for risk aversion σ which equals

0.5 and 3, respectively. The fourth column in Table 2 reports the ratio in the margin

requirement model. The fifth column in Table 2 reports relative output amplification

in a closed-economy version of the model with heterogeneous agents and endogenous

interest rate (see Appendix A.3 for modeling details). Finally, the last column reports

amplification when the procyclicality of leverage is shut down, that is, when ε = 0.

Table 2. Output Amplification Factor Under Learning And Misperception

Benchmark σ = 0.5 σ = 3 Margin Heterogeneous ε = 0

3.09 3.08 3.12 3.05 2.34 1.52

Direct inspection of Table 2 shows that our main findings are robust both to changes

in the utility function’s curvature and to an alternative timing assumption. Output am-

plification is quantitatively similar across different models and this turns out to be the

case for the other variables (not reported) as well. In addition, how the numbers change

in Table 2 accords with intuition. First, under the timing assumed in (3), incorrect

beliefs about the economy further amplify shocks because land price forecasts are tem-

porarily deviating from RE. In the margin model where the borrowing limit depends on
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today’s collateral market values so that forecast errors are slightly less important during

deleveraging episodes. In addition, smaller risk aversion implies that consumption will

fall by more and, therefore, that investment will fall by less at impact, which means that

output will also fall by (slightly) less under learning compared to rational expectations.

Although output amplification due to learning falls in the closed-economy variant, it is

still substantial.

To stress that initial beliefs about the persistence of the leverage process are important

for our results, we now report the amplification that comes from the self-referentiality of

learning alone, without the assumption that agents over-estimate persistence. To com-

pare the volatility under learning relative to rational-expectations we proceed as follows.

The learning model is initialized with the beliefs centered at the REE, simulated for

400 periods to allow estimates to converge to its long-run distribution and, finally, run

next for 60 quarters to assess the volatility of endogenous variables under learning. Ta-

ble 3 reports those volatilities. More precisely, the numbers in Table 3 shows the ratio

of variances of deviations from steady state, under alternative values of the CG gain.

Comparison of Tables 2 and 3 makes clear why our amplification results depend on the

assumption that ρθ is overstimated under learning. When learning agents are assumed to

know the true value of leverage persistence, amplification is modest, especially if the gain

parameter is not large. We also use those stochastic simulations to assess the frequency

of values for ρθ that are larger than or equal to 0.998, which is our calibrated value. This

rare event has a non-negligeable frequency of half a percent in the benchmark scenario

such that ν = 0.013. This means that such high values for persistence would be observed

on average every 50 years. This frequency goes up to about 19% if ν = 0.04 which means

that beliefs of close-to-unit-root persistence would be observed on average every 1.25

year.
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Table 3. Amplification Factor Under Learning Alone

Variable Benchmark: ν = 0.013 ν = 0.005 ν = 0.04

Output 1.04 1.020 1.10

Capital 1.04 1.020 1.10

Consumption 1.08 1.040 1.22

Land price 1.07 1.040 1.26

Debt 1.04 1.035 1.12

3.4 Learning the Mean Level of Leverage

The purpose of this section is to report the outcome of our second experiment. We

now subject the economy to the same shock that was considered in Section 3.1 but we

assume that agents overestimate both the leverage shocks’ persistence and the mean

leverage level. That is, agents believe that ρθ = 0.998 while the true value is 0.976. We

also set the RE value Θ = 0.88 just as in Table 1 and we assume learning agents believe

that Θ = 0.966, which is the value of leverage in the data at the peak of the land price

“bubble” in 2007Q2.
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Figure 6: Responses (in Percentage Deviations from the RE Steady State) to a −5%

Leverage Shock (Learning: Red Solid Line; Rational Expectations: Blue Dotted Line);

Parameter Values as in Table 1 and Belief set to Θ = 0.966
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The responses of our set of variables to a −5% shock to leverage are reported in Figure

6, which features substantially larger deviations under CG learning compared to the RE

benchmark. The fall in output under CG learning is more than 7 times larger than that

under RE, compared to 3 times in Figure 2.10 Overestimating the mean level of leverage

on top of its persistence adds a extra kick to the amplification mechanism that arises

under learning. Taken together, our two experiments suggest that learning amplifies

negative shocks to leverage such as the one observed in 2008Q4. A natural question

that we now ask is whether or not the learning model accords better with the actual

10Alternatively, setting ε = 0 implies that the relative output amplification is about 2.2 under learning,

compared to about 1.5 according to Table 2 when learning agents know the long-run leverage level.
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Figure 7: Land Price Response Over Time (Percentage Deviations From 2007Q4)

Actual Data (Green Line) and Model Generated Data (Red Line)
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path followed by the US output over the Great Recession than its rational expectations

counterpart.

4 Does Learning Help Account For The Great Recession?

The purpose of this section is to argue that learning is a plausible mechanism that

helps explaining the magnitude of the Great Recession. More precisely, we now show

that the learning model predicts both a boom in the early 2000s and a sizeable recession

beginning 2007Q3, while the model with rational expectations generates a fall in output

up to 2007Q3 followed by an expansion which are both at odds with the data. All pa-

rameter values are set according to Table 1 and we calibrate the land price i.i.d. shocks

so as to replicate the observed path for land price, as shown in Figure 7.11

11Although we set ρτ to zero, similar results obtain when the land price shock process has some

autocorrelation.
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Figure 8: Leverage Innovations (Constant-Gain Learning: Red Solid Line; Rational

Expectations: Blue Dotted Line)
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To derive leverage shocks, we use the data provided by Boz and Mendoza [5] for

the period 1975Q1-2010Q1 to decompose the exogenous and endogenous components of

leverage using definition (8). That is, we obtain the exogenous component Θt by remov-

ing the part of the leverage that is explained by land price. We then estimate AR(1)

processes on the log of Θt both under CG and under OLS and we compute the residuals

from such estimated processes that we use to feed our model with.12 The resulting inno-

vations, reported in Figure 8, do not significantly differ, which indicates that our results

derived below do not rely on disturbances being different under learning and under ra-

tional expectations.

Figure 8 makes clear why the model is unable to explain the Great Recession when fed

with only the actual leverage innovations: the fall in land price that starts in early 2007

generates positive shocks in 2007 and 2008 that produce a large expansion that is hardly

reversed when the negative shock happens in 2008Q4. Consistent with the literature, we

find that the model requires another source of disturbance to accord with the data and

12We have also checked that ARMA processes do not better describe our ε-adjusted data on leverage.
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Figure 9: Estimates of Leverage Persistence ρθ Over Time (Constant-Gain Learning:

Red Solid Line; Rational Expectations: Blue Dotted Line)
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this is why we use i.i.d. land price shocks to replicate the observed land price behavior

as shown in Figure 7.

Figure 9 reports the OLS and CG estimates of ρθ for the period 2000Q1-2010Q1. The

OLS estimate is obtained from a univariate regression using the data over sample period

1975Q1-2010Q1. This is consistent with the notion that RE agents know the process

governing leverage. The CG estimate is obtained from the VAR estimation when learn-

ing agents use the full model to forecast and update their beliefs in real time. Figure 9

partly replicates panel b) of Figure 1, to which we also add the OLS estimate which is

ρθ ≈ 0.976. Although Figure 9 may seem to imply that learning does not converge to

rational expectations, it does so in the whole sample period and also in theory, as the

CG estimates converge in distribution to the RE estimates.

Figure 9 shows that learning agents overestimate the autocorrelation parameter con-

sistently over the 2000s and, more importantly, that their estimate drifts toward unit

root. In particular, the model predicts that the VAR estimate of ρθ is around 0.998 in

2008Q3 (which is the value agents are assumed to use in Section 3.1 to make forecast
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about 2008Q4) and 1.002 in 2008Q4, before falling slightly below one. This means that

when the negative leverage shock of 2008Q4 occurs, learning agents think of leverage as

essentially having unit root and they expect any innovations at that time to be close

to permanent. As a consequence, deleveraging is much more severe than what would

happen under RE and the resulting outcome is reported in Figure 10.

Figure 10 shows that the model predicts a sizeable recession during the Great Reces-

sion period, with a fall in output about 1% between 2007Q3 and 2010Q1 and a significant

boom prior to that. Although the learning model explains only about 20% of the actual

output drop reported by the NBER to be about 5%, it does much better than the RE

model. The latter predicts a continuous fall in output from 2000 to 2007 followed by a

significant expansion over the 2007-2010 period, both features being at odds with the

data. The major reason behind such a stark contrast is that the RE model does not allow

for belief revision, while the latter feature precisely explains why learning agents were

overestimating the impact of the negative leverage shock in 2008Q4 and why this leads

to a sizeable output fall at that time in the model. We should also stress that setting

ν = 0.013 is a rather conservative assumption and that choosing a larger value for the

gain parameter would imply a bigger recession in the learning model. Given that the

model is overly too simple to fully account for the data, our main claim here is that the

learning model explains a sizeable fraction of the Great Recession, while the RE model

does not.13

In view of our theoretical results on countercyclical leverage reported in Section 3.2,

it is natural to ask whether the fact that leverage is procyclical aggravates the recession,

which is what intuition suggests. As a counter-factual, Figure 11 reports the output re-

sponse that occurs under mildly countercyclical leverage, with ε = −0.5 (implying that a

10% fall in land price increases leverage by 5%). Comparing Figures 10 and 11 suggests

13Under the assumption that ε = 0, the fall in output is still larger than half of a percentage point.
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Figure 10: Model-Generated Great Recession (Constant-Gain Learning: Red Solid

Line; Rational Expectations: Blue Dotted Line)

Output, Consumption and Debt Responses Over Time (% Deviations From 2007Q4)
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Figure 11: Counter-factual Model-Generated Expansion (Constant-Gain Learning: Red

Solid Line; Rational Expectations: Blue Dotted Line)

Output Response Over Time when ε = −0.5 (Percentage Deviations From 2007Q4)
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that a simple macroprudential policy may substantially attenuate the impact of leverage

shocks on aggregates under learning. In Figure 11, output is in 2010Q1 at about the

same level than that in 2007Q4.

5 Conclusion

A large part of business-cycle theory relies on the assumption that agents know all

parameters governing the stochastic process underlying the disturbances that hit the

economy. This paper has shown how relaxing such an assumption in a simple model

predicts that the economy’s aggregates respond very differently to financial shocks when

agents are gradually learning their environment, compared to rational expectations. More

specifically, our theoretical experiments with a calibrated model suggest that reasonable

parameter configurations can lead to much larger amplification of the impact of shocks

to leverage. This is for instance the case when learning agents overestimate either the
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autocorrelation parameter governing the persistence of leverage shocks or the long-run

level of leverage. We have provided evidence that both cases are not inconsistent with

the US data prior to the Great Recession, when borrowers probably believed that credit

collateralized by real estate assets was being extended by the financial sector. In addi-

tion, the more empirically oriented counterparts of our two theoretical experiments are

informative about which assumption better stands against the data. Our preferred model

with agents updating their estimates of the long-run level of leverage and of leverage per-

sistence as new data arrive is not unsuccessful in that respect. In particular, it predicts

a sizeable fall in output from peak to trough, as reported by the NBER, whereas the

rational expectations model predicts a continued, counter-factual expansion in 2008 and

2009. Our analysis could of course be extended to incorporate other margins (e.g. capac-

ity utilization, labor hours) and would be useful to measure the contribution of learning

in middle-scale models like that proposed by Christiano, Eichenbaum, Trabandt [11].

We believe that the main results of this paper may also be relevant for studying other

settings. For example, they are suggestive about how one could try to measure to what

extent unemployment variations are driven by beliefs formed by firms about either the

persistence of demand shocks or the steady-state level of demand, or both. Monetary

policy perhaps provides still another example in which the beliefs formed by the private

sector about the persistence or about the long-run stance of monetary policy matter,

in particular when the economy hits the zero lower bound, as they could change the

effects of policy on the economy. These are but a few examples for which extensions of

the setting used in this paper could lead to fruitful research. In the same vein, another

potential avenue for future research would be to model how perceptions about the pro-

cess driving uncertainty shocks affect how those shocks propagate in the real economy.

This requires solving higher-order approximations of nonlinear models and we believe

this calls for further inquiries.
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A Appendix

A.1 Elastic Leverage: Simple Micro-Foundations

This section derives some simple micro-foundations for the assumption of elastic lever-

age captured in (8). The case when leverage is procyclical (that is, ε > 0) obtains in

a setting with ex-post moral hazard and costly monitoring similar to Aghion et al. [2,

p.1391]. Suppose that the borrower has wealth QL and has access to investment oppor-

tunities, which can be financed by credit in the amount B. If the borrower repays next

period, his income is I − (1 +R)B, where I is whatever income was generated by invest-

ing. If the borrower defaults next period, his income is now I − pQL, assuming that he

loses his collateral with some probability p, which represents for example the frequency

of foreclosures. Strategic default is avoided provided that I − (1 +R)B ≥ I − pQL, that

is, if pQL ≥ (1 + R)B. The lender incurs a cost C(p)L when collecting collateral, with

C ′(p) > 0 and C ′′(p) > 0, and he chooses the optimal monitoring policy by solving:

max
p
pQL− C(p)L (21)

which gives Q = C ′(p). The higher the land price, the larger the incentives to increase ef-

fort to collect collateral. Assuming now that the cost function is C(p) = φp1+1/ε/(1+1/ε),

with ε > 0, gives that p = (Q/φ)ε. Setting the scaling parameter φ = Q∗Θ−1/ε, where Q∗

is steady-state land value and Θ is leverage, gives (8). Therefore, ex-post moral hazard

leads to procyclical leverage.

In contrast, countercyclical leverage obtains if government implements procyclical

taxes as follows. Suppose now that the lender gets (1 − τ)pQL − C(p)L when moni-

toring, where 1 ≥ τ ≥ 0 is the tax rate. Under the assumption that the cost function is

isoelastic, the optimal p is now p = ((1− τ)Q/φ)ε. If the government sets time-varying

taxes such that 1− τ = (Q/φ)−η/ε−1, for some η ≥ 0, then it follows that p = (Q/φ)−η
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and that leverage is countercyclical. Note that this happens provided that the tax rate

goes up when the land price goes up.

A.2 Log-Linearized Model in Levels

We now derive the log-linearized version of the set of equations (2)-(7) defining, together

with the laws of motion of leverage Θt = Θ
1−ρθΘρθ

t−1Ξt and of land price shock Tt =

T ρτt−1Ψt, intertemporal equilibria near steady state. In all equations below, lowercase

letters denote logs and x̃t denotes the log of Xt/X, where X is the steady-state value

of Xt. For example, k̃t ≡ kt − k, with kt = log(Kt) and k = log(K), so that lowercase

variables without time subscript are steady-state levels in log. Eliminating from the other

equations Φt by using (7), one gets the following linearized equations corresponding to

(2)-(7) and the exogenous states’ transition equations, respectively:

K
Y k̃t −

B
Y b̃t = −C

Y c̃t−1 −
(1+R)B

Y b̃t−1 +
(
α+ (1− δ)KY

)
k̃t−1 (22)

b̃t = (1 + ε)Et−1[q̃t] + θ̃t−1 (23)

c̃t = −λ̃t/σ (24)

q̃t + τ̃t + λ̃t(1− µΘ) = βEt[τ̃t+1] + Et[q̃t+1]
(
β + Θ(1 + ε)(µ− β)

)
+ Et[λ̃t+1]

(
β(1−Θ) + γβ YQ

)
+ αγβ YQEt[k̃t+1] + θtΘ(µ− β)

(25)

λ̃t = Et[λ̃t+1]
(
β(1− δ) + αβ YK

)
+ αβ(α− 1) YKEt[k̃t+1] (26)

(µ− β)φ̃t = µλ̃t − βEt[λ̃t+1] (27)

θ̃t = ρθθ̃t−1 + ξt (28)

τ̃t = ρτ τ̃t−1 + ψt (29)
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where τ̃t = log(Tt) = τt as the steady state value of Tt is set to one by assumption.

Define P ′t ≡ (bt, kt, θt, τt) and S′t = (ct, qt, λt, φt) the vectors of predetermined and

jump variables in log, respectively. Then equations (22)-(28) can be decomposed into

two subsystems, each pertaining to Pt and St. The first block composed of (22), (23),

(28) and (29) can be written:

M0Pt = M1St−1 +M2Et−1[St] +M3Pt−1 +N0 + V1ξt + V2ψt (30)

where:

M0 =



1 0 0 0

−B
Y

K
Y 0 0

0 0 1 0

0 0 0 1


, M1 =



0 0 0 0

−C
Y 0 0 0

0 0 0 0

0 0 0 0


, M2 =



0 1 + ε 0 0

0 0 0 0

0 0 0 0

0 0 0 0


,

M3 =



0 0 1 0

−(1 +R)BY α+ (1− δ)KY 0 0

0 0 ρθ 0

0 0 0 ρτ


, N0 =



b− (1 + ε)q − θ

K
Y k + RB

Y b+ C
Y c− (α+ (1−δ)K

Y )k

(1− ρθ)θ

0


and V ′1 = (0, 0, 1, 0), V ′2 = (0, 0, 0, 1).

The second block (24)-(27) can be written:

M4St = M5Et[St+1] +M6Pt +M7Et[Pt+1] +N1 (31)

where:

M4 =



0 1 1− µΘ 0

0 0 1 0

σ 0 1 0

0 0 −µ µ− β


, M5 =



0 β + Θ(1 + ε)(µ− β) β(1−Θ) + γβ YQ 0

0 0 β(1− δ) + αβ YK 0

0 0 0 0

0 0 −β 0


,
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M6 =



0 0 Θ(µ− β) −1

0 0 0 0

0 0 0 0

0 0 0 0


, M7 =



0 αγβ YQ 0 β

0 αβ(α− 1) YK 0 0

0 0 0 0

0 0 0 0


,

N1 =



q(1− β −Θ(1 + ε)(µ− β)) + λ(1−Θµ− β(1−Θ)− βγ YQ)− αβγ YQk −Θ(µ− β)θ

λ(1− β(1− δ)− αβ YK )− α(α− 1)β YK k

c+ λ
σ

(µ− β)(φ− λ)


.

Finally, substituting the expression of Pt from (30) in (31) and piling up the resulting

two blocks of equations allows one to rewrite the system as:

Xt = AXt−1 + BEt−1[Xt] + CEt[Xt+1] + N + Dξt + Fψt (32)

where X ′t = vec(S′t, P
′
t) and:

A =

M−14 M6M
−1
0 M1 M−14 M6M

−1
0 M3

M−10 M1 M−10 M3

, B =

M−14 M6M
−1
0 M2 O4

M−10 M2 O4

,

C =

M−14 M5 M−14 M7

O4 O4

, D =

M−14 M6M
−1
0 V1

M−10 V1

, F =

M−14 M6M
−1
0 V2

M−10 V2

,

N =

M−14 N1 +M−14 M6M
−1
0 N0

M−10 N0


where O4 is a 4-by-4 zeroes matrix.

A.3 Extension: Closed-Economy Model with Constant Interest Rate

The purpose of this appendix is to show that, similar to the open-economy model

developed in Section 2, learning generates amplification in a closed-economy version

with domestic borrowers and lenders and endogenous interest rate.
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Let us now assume that lenders are domestic agents (instead of foreign countries as in

Section 2), whose unique role is to provide loans to borrowers. Following Iacoviello [23],

lenders derive utility from consumption and land holdings, and they get interest income

from last period’s loan payments. As discussed in Pintus and Wen [40], lenders may be

interpreted as financial intermediaries. The representative lender solves:

maxE0

∞∑
t=0

µt
{

(C lt)
1−σc − 1

1− σc
+ ψ

(Llt)
1−σl − 1

1− σl

}
(33)

with σc, σl, ψ all strictly greater than zero and µ ∈ (0, 1), subject to the budget con-

straint:

C lt +Qt(L
l
t+1 − Llt) +Bt+1 = (1 +Rt)Bt (34)

where C lt and Llt denotes the lender’s consumption and land holdings, respectively, Qt is

the land price, Bt+1 is the new loan. The interest rate Rt is now endogenous and it is

determined by the equality between the demand and supply of loans.

The first-order conditions obtained from (33)-(34) with respect to consumption, land,

and lending are, respectively:

(C lt)
−σc

= χt (35)

χtQt = µEt[χt+1Qt+1] + µψ(Llt+1)
−σl

(36)

χt = µEt[χt+1(1 +Rt+1)] (37)

where χt is the Lagrange multiplier of constraint (34) in period t.

Assuming that lenders’ utility is linear in consumption (that is, σc = 0), one gets from

(35) that in any rational expectations equilibrium χt = 1 for all t ≥ 0 so that, in view

of (37), the interest factor is constant and given by 1 + R = 1/µ. As in the small-open

economy model developed in Section 2, the interest rate is constant and the land price

moves over time.

The borrower side of the model is still described by (1), (2) and (3), as in Section
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2, with the addition that the total amount of land is now divided between lenders and

borrowers according to:

Lt + Llt = L̄.

where L̄ is the fixed supply of land. How exactly is land divided depends on both the

sequence of land price and the lender’s preferences, as reflected in the first-order condition

(36). In addition, the representative borrower’s first-order conditions are given by (4)-

(7). As in Section 2, if µ ∈ (β, 1), then the borrower’s credit constraint (3) is binding.

Therefore, the main difference is that the closed-economy model allows some reallocation

of land from lenders to borrowers when a shock hits the economy. This is why collateral

constraints generate boom-bust patterns even when both the land price and the interest

rate are constant over time (see Pintus and Wen [40] for a complete analysis). Under

our calibration (see Table 1), however, the effect of land reallocation is quantitatively

unimportant because the land share γ is reasonably small. To ease comparison with

Figure 2, Figure 12 reports the response of output in the model when the endogenous

interest rate is constant (that is, when σc = 0). Output amplification is more than twice

larger under learning, compared to rational expectations. When the lender’s utility for

consumption no longer exhibits risk neutrality, output amplification remains much larger

under learning provided that σc is not too large. For example, if we assume that the

lender is less risk averse than the borrower and that σc = 0.5, output amplification is

almost twice as big under learning. Such robustness reflects the well-known result that

in this class of models, the borrowing interest rate is not much volatile if the lender’s

utility function is between linear and logarithmic. It follows that amplification due to

learning arises as long as lenders are not too risk averse.
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Figure 12: Ouput Response (in Percentage Deviations from Steady State) to a −5%

Leverage Shock under Learning (Red Solid Line) and Rational Expectations (Blue

Dotted Line) in Model with Heterogeneous Agents and Endogenous Interest Rate;

Parameter Values in Table 1.

10 20 30 40 50 60
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A.4 Learning Procedure of VAR Model

A.4.1 VAR Estimation

Denoting X ′t = vec(S′t, P
′
t) the system can be written as before:

Xt = AXt−1 + BEt−1[Xt] + CEt[Xt+1] + N + Dξt + Fψt (38)

where A, B, C, D, F and N are given in Appendix A.2. The rational expectations

solution has a VAR form:

Xt = MXt−1 + H + Gξt + Jψt. (39)

Given this form of equilibrium, the law of motion of endogenous variables can be repre-
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sented using Et−1Xt = MXt−1 + H and EtXt+1 = MXt + H as:

Xt = AXt−1 + B [MXt−1 + H] + C [MXt + H] + N + Dξt + Fψt, (40)

or

Xt = [I−CM]−1 [A + BM]Xt−1 + [I−CM]−1 [BH + CH + N]

+ [I−CM]−1 [Dξt + Fψt] ,

Matrices M and H are given by:

M = [I−CM]−1 [A + BM] (41)

H = [I−CM]−1 [BH + CH + N] . (42)

To estimate the VAR we represent the model as

Xt = ΩZt−1 + Σt, (43)

where Z ′t−1 = [1′, X ′t−1] and Ω = [H M].

The estimator for Ω equals

Ω̂ = XZ ′(ZZ ′)−1, (44)

and its time T estimates, Ω̂T , can be computed from

Ω̂T =

(
1

T

T∑
t=2

XtZ
′
t−1

)(
1

T

T∑
t=2

Zt−1Z
′
t−1

)−1
. (45)

The recursive OLS updating takes form of

Ω̂T+1 = Ω̂T +
1

T + 1

(
XT+1 − Ω̂TZT

)
Z ′TR−1T+1 (46)

and

RT+1 = RT +
1

T + 1

(
ZTZ

′
T −RT

)
. (47)
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Equations (47) and (46) show how the estimates of matrix Ω are updated as new data

become available. In the above expression, XT+1−Ω̂TZT corresponds to a forecast error

made using last period estimates. Under constant gain updating, the weight 1/(T + 1)

is replaced by the gain parameter ν.

A.4.2 Learning

Assume agents re-estimate the consistency with the RE model each period and use their

estimates to make forecasts. These forecasts affect the behavior of the economy through

equation (38).

Agents’ perceived low of motion is

Xt = MXt−1 + H + Σt = ΩZt−1 + Σt. (48)

The forecasts agents make use the estimates of this PLM over available data. Since Xt

depends on agents’ forecasts (so it is not available at time t regression) at time t agents

have run the regression:

EtXt+1 = Mt−1Xt + Ht−1 = Ωt−1Zt (49)

Et−1Xt = Mt−2Xt−1 + Ht−2 = Ωt−2Zt−1 (50)

where now we allow agents to depart from running simply OLS regression (least-squares

learning) and use constant gain,

Rt = Rt−1 + νt
(
Zt−1Z

′
t−1 −Rt−1

)
Ωt = Ωt−1 + νt (Xt −Ωt−1Zt−1)Z

′
t−1R

−1
t .

Substituting in agents’ expectations, we can write the actual law of motion as

Xt = AXt−1 + B [Mt−2Xt−1 + Ht−2] + C [Mt−1Xt + Ht−1] + N + Dξt + Fψt (51)
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or

Xt = [I−CMt−1]
−1 [A + BMt−2] + [I−CMt−1]

−1 [CHt−1 + BHt−2 + N]

+ [I−CMt−1]
−1 [Dξt + Fψt]

(52)

There is a mapping {M,H} = T (M,H) from PLM to ALM,

TM(M,H) = [I−CM]−1 [A + BM] (53)

TH(M,H) = [I−CM]−1 [BH + CH + N] . (54)

Rational expectations equilibrium is a fixed-point of this mapping:

Mre =
[
I−CMre]−1 [A + BMre] . (55)

Conditional on Mre we can solve for Hre:

Hre =
[
I−

[
I−CMre]−1 (B + C)

]−1 [
I−CMre]−1 N. (56)
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