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Foreword

This report addresses technological sovereignty in artificial intelligence (AI) within

the European Union (EU). AI is widely regarded as a breakthrough technology,

potentially dual-use1, and a strategic asset. AI is viewed as an essential driver

of productivity and competitiveness in the near future, making it a key industrial

priority amid growing international competition and rivalry. Insufficient investment

in AI and related industries could jeopardize both economic growth and security,

quickly turning AI development into a matter of national sovereignty.

We define technological sovereignty in AI as the ability of countries to mobilize

and integrate AI-related competencies locally (that is, domestically). In other words,

we offer a competence-based approach to assessing technological sovereignty in AI.

Our objective is both descriptive and analytical. Concerning the descriptive section

of the report:

• We identify the key AI competencies along a series of steps involved in the

production of and innovation in AI, from the most pervasive AI-related tech-

niques, on through more concrete AI-related functions to the most concrete ap-

plications. We call this the Technique-Function-Application value chain (TFA

value chain). We purposefully focus on a stylized value chain limited to AI-

algorithms, rather than the whole AI stack that includes data and compute

infrastructure, as we are interested in the specific competences that enable

core AI innovation.

• We position countries along the TFA value chain in terms of relative special-
1Dual-use technology refers to products, technologies, and knowledge that can serve both

civilian and military or security purposes. Apart from artificial intelligence, examples include
chemicals, biotechnology, nuclear technology, together with computing.
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ization, disentangling areas of relative strengths and weaknesses that can serve

as a guide to design science, technology and industrial policies.

The report provides ample evidence of country specialization in well-identified

areas of AI. We opted to provide as much information as possible, even if it may

occasionally feel overwhelming to the reader. We chose to include various descriptive

graphs, tables, and names of key actors in the report to satisfy the curiosity of our

readership.

From a more analytical viewpoint, we provide two main outcomes:

• We develop country specific measures of integration along the stylized AI value

chain, interpreting this metric as a proxy for technological sovereignty in AI.

Using this approach, we perform cross-country comparisons of technological

sovereignty across the entire value chain.

• We provide evidence of integration enhancing innovation. Since integration

within the AI value chain supports future innovation—and given that AI is

increasingly established as a foundational technology—this is a strategic area

in which technological sovereignty can be achieved.

Throughout the whole repertoire of analyses we engage in, we take a European

perspective, meaning that we offer a study looking beyond the limits of national

boundaries, that assesses technological sovereignty in AI at a continental scale.

Overall, we find a substantial gap between the reality and the potential of the EU’s

leadership in AI innovation and production. In reality, a divide persists between the

EU and the global frontier, with Europe trailing behind leading innovators. On the

potential side, however, there are increasing returns to be gained at the EU level
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by leveraging coordinated policies, investments, division of labor, and competence

building across the continent.
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Executive summary

1. Over the past two decades, the income gap between the United States and

Europe has widened. This growing gap is mainly due to the lower growth rate

in productivity in Europe. It also indicates the increasing difficulty Europe

has either integrating advanced technology into its production processes or

pushing the technological frontier forward.

2. AI is the latest advance in ICT technology; hence, tracking the dynamics

of ICT investments provides insights into Europe’s position compared to the

global frontier. The EU trails the US in all types of private ICT investments

(equipment, services, research and development), and the gap has been in-

creasing over time.

3. When decomposing the growth rate of the different types of ICT investments

by sectors, it appears that the main contributors of superior American ICT

R&D and equipment investment growth are ICT services, likely driven by

large tech corporations (mostly, the so-called GAFAM). Overall, the evidence

indicates that the EU’s position as a follower results from the slow diffusion of

digital technology across the economy, and a lack of large investors (European

“champions”).

4. Sizeable financial investments are required to cover the European investment

gap in ICT (AI’s technological backbone) and to escape its “middle technology

trap”. This situation indicates that a discussion on the continental financing

of investments is needed. In addition to resourcing, being able to lead with

regard to ICT and AI developments requires competences.
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5. Increasing international rivalries and the reliance on overseas resources and

platforms have focused political attention worldwide, and in the EU in partic-

ular, on autonomy and sovereignty in the domain of technology — technological

sovereignty. Technological sovereignty can be seen as the capability to develop

a technology without external dependencies.

6. Rapid advances in AI, estimations of its widespread impact, and the emergence

of a full-fledged industry around it have turned the technology into a “strategic

asset”. Combined with the awareness of the dependency of AI developments

on a handful of overseas actors, AI has become a key focus for policies aimed

at strengthening technological sovereignty.

7. As of now, the EU approach to AI policy (in particular, the AI Act) has

followed the trajectory of its other horizontal regulatory efforts (GDPR, DSA,

DMA) with user protection at its center. However, fostering competitiveness

and technological sovereignty in AI is also a matter of investment and, thus,

of science, technology, and industrial policies. The EU can make major gains

by concentrating on the development of competence and the coordination of

innovative efforts.

8. AI is a system technology. Its services are deployed on the basis of the align-

ment and complementary efforts of hardware and software components. Since

different AI techniques can fulfill various functions across different applica-

tions, dynamic coordination failures may occur when actors favor one tech-

nique over others, potentially disrupting the AI value chain.

9. A useful way to capture the “systems-ness” of AI — and to identify the com-

petences that actors have to develop it — is to map its development through
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a stylized value chain that encompasses techniques (T), functions (F), and

applications (A).

10. Integration reflects the ability to coordinate potentially complementary activ-

ities throughout the value chain and develop innovative solutions. The un-

certainty, ambiguity, and obsolescence inherent in emerging technologies make

investments in specific or co-specialized resources costly and risky for a single

firm. However, at the national level, integration can strengthen sovereignty

and competitiveness. Integration is an outcome of several stakeholders’ ex-

pertise and investment. It involves the ability to mobilize complementary re-

sources and generate innovation opportunities for local actors throughout the

value chain. In brief, integration indicates an institutional environment that

facilitates the coordination of innovation ecosystems and predicts innovative

performance, with obvious effects on productivity and employment.

11. Technological sovereignty challenges the classical and modern trade theories by

prioritizing strategic autonomy and independence over the economic efficiency

gains derived from specialization. While specialization can lead to greater

global efficiency and mutual benefits under stable conditions, technological

sovereignty focuses on reducing vulnerabilities and ensuring that countries can

independently navigate global uncertainties, potentially at the cost of forgoing

some benefits of international trade.

12. AI patent and publication production has increased over time, beginning ini-

tially in the mid-nineties. The post-2010 period shows an impressive rise in the

rate of production of patents and publications. This acceleration is associated

with the beginning of the “Deep Learning era”, with the joint introduction

of the back-propagation technique and faster computing enabled by graphical
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processing units (GPU), backed by the availability of large-scale databases

such as the ImageNet image dataset.

13. There is a large gap between the EU, the US, and China in terms of patent

production and in the number of publications when comparing the EU with

the US. The number of EU27 patents is almost a third of the number of US

patents. In contrast, the EU27 has 90% of the number of US publications.

14. The EU ranks 17th in per capita patent production, while the EZ ranks slightly

higher, in 16th place. This result represents one fifth of US per capita patents,

and one twelfth of China’s. The EU ranks 13th in per capita AI publications,

while the EZ ranks in 12th place. Europe performs better than China in per

capita AI-related publications.

15. In the realm of AI, the European paradox may be more severe than originally

identified. The gap with the US is both science- and innovation-based. The

quest for improving AI competences is, thus, a transversal matter encompass-

ing science, technology, and industrial policies.

16. In virtue of the cumulative nature of knowledge, without achieving a critical

mass in AI-related innovation, the EU risks to be unable to close the gap with

the global frontier.

17. The top 5 players in AI-related patent production in the world are: Intel (USA,

with 27,500 patents corresponding to 17,000 inventions), IBM (USA, 21,500

patents, 13,000 inventions), Samsung (South Korea, 18,500 patents and 9,000

inventions), NEC (Japan, 17,500 patents and 11,000 inventions), and Microsoft

(USA, 14,500 patents for 7,000 inventions).
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18. There are 3 European companies in the top 20 chart in AI-related patent pro-

duction: Siemens (Germany, with 10,000 patents corresponding to 5,500 in-

ventions), Philips (the Netherlands,7,000 patents, 3,000 inventions), and Bosch

(Germany, 7,000 patents and 2,300 inventions). These three companies pro-

duce higher quality patents relative to their worldwide competitors.

19. Chinese universities are among the top 20 public organizations involved in pro-

ducing AI-related patents, but produce lower quality patents. When focusing

on non-Chinese public actors, US and South Korean institutions account for

12 out of 20 positions in the ranking. Looking at Europe, large public research

institutes such as CSIP (Spain), CNRS and INSERM (for France), and Fraun-

hofer (for Germany) account for most AI-related patents. European public

actors produce higher quality patents than their non-European counterparts.

20. The top players in AI-related science are essentially American (11 among

the top 20 players) and Chinese (4 players). France (Centre National de

la Recherche Scientifique — CNRS), India (Indian Institute of Technology

System — IITS), the United Kingdom (University of London), Singapore

(Nanyang Technological University) and Switzerland (Swiss Federal Institutes

of Technology Domain) also appear in the top 20 chart. Digital giants such as

Microsoft, Google and IBM appear as major players in AI science. The CNRS

ranks fourth worldwide, and is the only organization among the top 20 players

belonging to the European Union.

21. In Europe, AI-related knowledge production in scientific papers is led by large

institutes in France and Germany in primis, specifically, CNRS and INRIA

for France, and the network of Max Planck research centres for Germany. The

only company involved is the German industrial producer Siemens AG.
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22. European actors, both private and public, are followers rather than leaders

both in AI patents and publications. While scientific production related to AI

in the US shows traces of “industrialization”, with private actors competing

with universities, in Europe large public research institutes continue to play

the major role in AI knowledge production.

23. Concerning AI techniques since 2011, and by decreasing order of specializa-

tion, the top five areas of specialization are as follows. In Europe, these are:

Ontology engineering; Rule learning; Machine learning; Generative AI; Prob-

abilistic graphical models. In the US, these are: Rule learning; Machine learn-

ing; Ontology engineering; Probabilistic graphical models; Expert systems. In

China, these are: Support vector machines; Fuzzy logic; Multi-task learning;

Classification and regression trees; Deep learning.

24. Concerning AI functions since 2011, the top five areas of specialization in

decreasing order are as follows: In Europe, these are: Control methods; Com-

puter vision; Scene understanding and video for robotics; Speaker recognition;

Biometrics. In the US, these are: Control methods; Natural language process-

ing; Speech recognition; Text-Speech recognition; Dialogue. In China, these

are: Distributed artificial intelligence; Information extraction; Planning and

scheduling; Image and video segmentation; Semantics.

25. Concerning AI applications since 2011, the top five areas of specialization in

decreasing order are as follows. In Europe, these are: Transportation; Life and

medical sciences; Personal devices, computing and HCI; Energy management;

Cybersecurity. In the US, these are: Personal devices, computing and HCI;

Business; Document management and text processing; Banking and finance;

Cybersecurity. In China, these are: Agriculture; Industry and manufacturing;
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Telecommunications; Education; Networks.

26. Unlike the US and China, Europe does not display a specific specialization

profile with regard to AI techniques, functions, and applications. This lack

of specialization is the result of individual EU countries not exhibiting clear

patterns of specialization. Therefore, there is no process of Ricardian special-

ization in European member states, contrary to what we observe in the US or

in China. This fact can provide a policy opportunity: through coordination

and support, the EU as a whole has a great deal of room for action to steer

the direction of AI development towards specific areas.

27. The overall values of concentration along the entire value chain are low. This

finding suggests that countries have rather dispersed portfolios of competences

across the TFA value chain. There is more concentration of effort in upstream

competences, meaning in AI techniques, than in downstream functions and

applications. AI techniques offer a range of services — functions and appli-

cations. Therefore, countries allocate inventive efforts to fewer AI techniques,

especially as some of them become dominant in the field over time. Europe,

whether the EU or the EZ, has medium levels of median concentration values,

and its constituent countries has medium levels of concentration values, and

its constituent countries display levels of concentration values that are similar

to other non-European countries.

28. The TFA value chain of AI is becoming more and more structured around

better-identified combinations of techniques, functions, and applications that,

when linked together, yield services that cannot be reduced to their inde-

pendent usage. This development grows in successive waves that suggest the

possibility for future waves to occur.
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29. Contrary to the United States and China, Europe exhibits low levels of integra-

tion. Within Europe, Italy displays the highest level of integration, together

with countries such as Finland, Sweden, and the Netherlands. France and

Germany have low levels of integration.

30. Europe exhibits a relatively high number of AI application domains where it

has specialized. However, many of them are not integrated, implying that

technological sovereignty is not achieved over these areas of specialization.

More fundamentally, whether we focus on Europe as a whole or individual

countries, AI application domains with both specialization and integration are

rare in Europe, more so than in any other location in the world.

31. The advent of deep learning in 2012 and its subsequent diffusion eventually

translated into a significant decrease in integration in the regions considered.

This phenomenon illustrates the fact that integration over the AI value chain

is an emerging property of the TFA specialization pattern, conditional on

exogenous technical changes that countries drive only partially.

32. The locus of integration may vary a great deal with regard to areas of spe-

cialization, depending on whether we consider upstream (ΓT F ) or downstream

(ΓF A) integration. There are both cross-application variations (given the coun-

try) and cross-country variations (given the AI application). The heterogeneity

in integration throughout the value chain is the expression of local systems of

innovation throughout the AI value chain involving specific public and private

actors and specific sets of collaborations and interactions.

33. Integration is a source of innovation as it is a significant contributor to patent

production. This finding suggests that developing local expertise throughout
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the entire value chain increases the innovative capacities of a country in AI-

related innovation in specific application domains.

34. Other factors matter for innovation in AI. First and foremost, specialization in

specific AI applications and overall knowledge stock are prime factors in patent

production. Second, the innovation capacity of a country in AI is associated

with the ability to develop a diverse portfolio of expertise in technical domains

while concentrating investments in the development of a limited number of spe-

cific application domains and functions. A last but important finding relates

to the negative effect of the propensity to collaborate with foreign partners,

which confirms the important advantage of local innovation networks.

35. Innovation in AI results from integration both upstream (techniques-functions)

and downstream (functions-applications). Openness tends to reduce AI inno-

vation, as it weakens the power of integration to produce new knowledge in

the realm of AI.

36. When focusing on the organizational origins of integration, we can see how TF

integration is fostered by private actors, while TA and overall TFA integra-

tion is enhanced by the presence of public assignees. Collaborations between

private actors enhance integration overall. Openness and integration are pos-

itively related across TF, FA, and TFA, suggesting that AI innovators can

develop or expand competences by connecting internationally. In the second

stage, the resulting higher level of domestic integration will have a positive

effect on innovation.

37. Different countries display different profiles in terms of the types of actors and

organizations involved in AI (patent) innovation. Two general regimes seem to
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emerge: one innovating through private and international collaborations, and

the other through public and private-public co-patenting. Germany and France

epitomize the two different regimes, while the EU and EZ seems to innovate

as a linear combination of the two. This finding illustrates, once again, the

opportunities for AI innovation at the continental level, which could rely on a

broader group of innovating organizations.

38. The lack of integration and thus sovereignty in European AI can be seen as

a call to (policy) action. Coupled with the evidence of insufficient private in-

vestment in ICT infrastructure, databases, and software within Europe, a key

insight to derive is that the scope for improvement is vast. Hence, we find

limited grounds for optimism regarding the future development of a so-called

European AI industry. Based on our findings, we envisage two avenues to

follow. On the one hand, the EU needs a “big push” in terms of additional

investments. Exogenous shocks in the forms of heavy public programmes, as

advocated by Aghion et al. (2024) in the case of France and by Draghi (2024)

for the whole Union are more than necessary. On the other hand, the issue is

not exclusively quantitative. Efforts in developing a common understanding

of the directionality of investments, for instance by allocating scientific and

technological funding to directions entailing high returns (Fuest et al. 2024)

is also a fundamental challenge to tackle. Our report indicates that a critical

yet unrealized factor is the enhancement of EU governance. Strengthening

EU governance is necessary to provide increasing coordination between stake-

holders within and between European countries and European institutions is

needed in order to build a fully integrated continental AI industry, one that

would substantially and structurally enhance European sovereignty in AI.
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1 Introduction

As the world economy becomes increasingly fragmented and international rivalries

re-emerge (Tyson et al. 2023), policy discourse has begun to prioritize and stress the

importance of domestic competences, autonomy, and sovereignty in the production

of technologies, goods, and services (Crespi et al. 2021). Achieving “technological

sovereignty” has become an important pre-condition for increasing competitiveness

and innovation. In light of this situation, the European Union (EU), the United

States (US) and several national governments have launched a series of exercises to

assess their resilience to shocks to the value chains of key products and of strate-

gic dependencies in fundamental inputs and technologies.2 The rationale for doing

so is both economic and (geo)political: countries aim to reduce trade-related de-

pendencies by favoring domestic sourcing and the development of in-house compe-

tences, while paying increasing attention to security and defense issues related to

possible “technology leakage” to rivals.3 To increase their autonomy, governments

increasingly resort to industrial policy, exploiting a political climate favorable to the

intervention of the state in the economy.

Technological sovereignty in Artificial Intelligence (AI) is a critical challenge

as AI becomes increasingly integrated into essential infrastructures, economic sys-

tems, and social structures (OECD 2019). The 2020’s European Commission’s Dig-

ital Strategy emphasizes the importance of strengthening Europe’s technological

sovereignty and reducing reliance on foreign technologies in critical areas, including

AI (European Commission 2020a). AI is a breakthrough technology with transfor-
2see, for instance, Arjona et al. (2023) for the EU case
3For instance, recently the European Commission assessed risk and leakage in four key tech-

nology areas: advanced semiconductors, artificial intelligence, quantum computing, and biotech-
nologies — see here (last accessed: July 2024).
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mative economic and societal potential and is regarded as a major driver of future

industrial and economic competitiveness (European Commission 2020b). Conse-

quently, it has become a central focus of international rivalries and emerging “arms

races” to lead and control its development (Kak & West 2024, Bryson & Malikova

2021).

As a result, the world economy is exploring uncharted territory, with surging

tensions between the desire for global coordination and protectionist “races to the

bottom”. These tensions are particularly interesting to observe at the EU level;

while competitiveness is an existential challenge for the Union (Draghi 2024), in

practice we witness a continuous clash between the forces supporting state aid and

those upholding the principle of guaranteeing the level playing field characterizing

European competition policies and underpinning the operation of the single market

(Fontana & Vannuccini 2024)..

We contribute to the ongoing discussion about technological sovereignty and

competitiveness in Europe by conducting a competence-based analysis. Focusing on

AI, we answer the following question: is the European Union capable of achieving

sovereignty in a fundamental technology that is increasingly considered pivotal and

strategic globally? With the adjective “capable”, we mean whether the EU, through

its member states, has a relative advantage when it comes to specializing in the know-

how needed to advance the technology (through innovation) at different stages of

its supply chain, from scientific developments to industrial implementation.

AI is a system technology (Vannuccini & Prytkova 2024), with different com-

ponents evolving in response to difference forces, incentives, and logics. Hence,

strengthening competitiveness in this technology is a multidimensional challenge.

We decided to focus our study on a key aspect directly influencing how different

actors can become competitive in the AI field: innovation. In order to identify
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strengths and gaps in the European competences to innovate in AI, we conduct an

empirical analysis of a measure of the integration of AI inventions based on patent

data for the period 1990-2021. We consider this data with regard to a stylized value

chain relevant to the production of and innovation in AI, composed of techniques (T),

functions (F), and applications (A) — what we label the TFA value chain. It is our

choice to work with this stylized structure, which is not a representation of the full

technology stack of AI along which value is accrued. Rather, the TFA value chain is

an empirically-driven construct that maps and extends the established classification

of AI patents provided by the World Intellectual Property Organization (WIPO).

It allows us to assign inventive activities to different domains, from those closer to

basic science (techniques) to those more related to commercial use (applications)

(WIPO 2019). The intuition behind our approach is that greater integration among

complementary TFA indicates more widespread competences to produce AI systems

domestically, and thus more competitiveness in AI innovation. In turn, the presence

of competences can be interpreted as an indicator of autonomy and sovereignty in

a specific technological domain. Importantly, with our data we are able to test the

role played by different forces in shaping AI-innovation integration. For instance,

we can measure whether integration is fostered by overall patent activities, scientific

publications, openness, or collaborations between private and public actors. An-

other advantage of focusing on the forces driving AI innovation is to abstract away

from the current patterns of AI adoption by end users. As McElheran et al. (2024)

point out, downstream AI implementation is rather limited and heterogeneous, and

generally limited to large firms. Concentrating the analysis on AI innovation allows

us to identify the root sources of competitiveness and, thus, to make actionable

policy suggestions.

With this study, we contribute to the growing literature on AI economics, strat-
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egy, and policy. In particular, we provide evidence supporting the recommendation

of a more pro-active role of the EU in the AI domain, in line with the suggestions of

other recent key policy reports (Draghi 2024, Fuest et al. 2024, Aghion et al. 2024).

The novelty of the work is that it takes an original approach to analysis: rather

than exploring all of the components that jointly make up current AI systems such

as computation, algorithms, data, and talent, we take a more aggregate perspective

and focus on AI integration. We maintain that this approach results in a neat ex-

planatory variable that we can use to make sense of the dynamics of innovation in

AI. In addition, it can be used as a policy lever that relates to competitiveness and

technological sovereignty. We are aware of the system nature of AI technologies and

that competitiveness also depends on the investments that countries have made to

build complementary (often hardware-related) assets that enable the deployment of

AI models. Given that the AI innovation evident in patent data must necessarily be

embedded in physical technologies, we are confident that our analysis captures part

of the complex nature of this phenomenon. Nevertheless, we are conscious of the

limitations of patent data to capture recent advances in AI such as large language

models (LLMs). In fact, our data end well before the widespread implementation of

the Transformer architecture in AI models.4 However, the rationale for our focus on

patents is that what really matters for competitiveness, autonomy, and the relevance

of strategic dependencies, and thus for policy, is the overall AI innovation process

that unfolds through the TFA stages. Recent advances in AI occur mostly in the

domain of AI-powered business models and final stand-alone products, particularly

as interfaces that commercial customers tend to adopt. These software solutions

are key to the widespread diffusion of AI. Nevertheless, an assessment of the degree
4The Transformer was introduced in 2017, but became the cornerstone of commercial and

open-source foundation models only later (Vaswani et al. 2017)).
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of sovereignty in AI in the EU must consider to what degree domestic competences

to develop AI systems already exist, and how they fare relatively to other areas of

the world. In this sense, with our aggregate analysis we have captured more fun-

damental determinants of technological sovereignty in AI than a granular but less

innovation-oriented perspective could offer.

The report is organized as follows. In Section 2, we map the landscape: first, we

outline the challenges the EU faces in the domain of digital technology (of which

AI is part). Second, we explore the ongoing focus on (technological) sovereignty

as a means of assessing the current situation and as a driver of policy initiatives

and strategy in the domain of AI and beyond. In Section 3 we argue for a sys-

tem perspective on AI, from which emerges our choice of measuring sovereignty as

competences to innovate in the technology across all elements of the stylized TFA

value chain. Section 4 explains the data we use and our methodology in detail.

Specifically, we discuss how we identify AI-relevant patents and publications and

calculate the countries’ specialization in different AI domains. Section 5 presents

our measure of integration. In Section 6, we delve into the econometric analysis.

First we test whether integration matters at all for innovation. Second, we explore

the organizational roots of integration. Section 7 summarizes our findings.
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2 The political economy of AI in the European Union

What forces shape the European discourse and action around AI? To ground our

analysis, we begin by outlining a series of stylized empirical facts characterizing

European digital investments as compared to other areas of the world (subsection

2.1). The evidence illustrates some of the challenges the EU is facing in this domain.

It also provides a rationale for discussing sovereignty (and technological sovereignty

in particular) as an increasingly major driver of policy initiatives. In subsection 2.2,

we unpack the meaning of technological sovereignty and discuss its relevance for the

case of AI.

2.1 European economic growth and digitisation: some stylized facts

Despite being the world’s largest single market, the EU trails other actors in terms

of competitiveness.5 For instance, Figure 1 plots the dynamics of (hourly) labor

productivity for the Eurozone (EZ), the United States (US), and a selection of indi-

vidual European countries. As argued in Bock et al. (2024), this growing divergence

between the Eurozone and the United States translates into a slower growth rate in

GDP per capita in the EZ. In fact, over the past two decades, the income gap be-

tween the United States and the Eurozone has widened rather than narrowed. This

growing disparity began well before the Covid-19 pandemic, reflecting a gradual

decoupling in overall economic performance.

Given that productivity proxies for efficiency in the use of technology (among

other things) to transform inputs into outputs, the growing gap we observe indicates

that Europe is finding it increasingly difficult either to adopt advanced technology in
5This subsection is inspired by the OFCE Policy Brief 129 (Bock et al. 2024) and the associated

blog on investments.
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Figure 1: The dynamics of hourly labour productivity
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its productive fabric, or to push the technological frontier forward. These difficulties

should be a call to action for Europe to accelerate the development of emerging,

economy-boosting technologies such as AI.

Summary Over the past two decades, the income gap between the United
States and Europe has widened. This growing gap is mainly due to
the lower growth rate in productivity in Europe. It also indicates
the increasing difficulty Europe has either integrating advanced
technology into its production processes or pushing the technolog-
ical frontier forward.

To map European strengths and weaknesses in AI development, we take a

broader perspective that encompasses digital technology. In fact, according to Car-
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lota Perez and her theorizing on technological revolutions, AI “is better under-

stood as a key development within the still-evolving information-communications-

technology (ICT) revolution.”6 Understanding the EU’s challenges in ICT can,

therefore, shed light on potential deficiencies and gaps related to AI.

ICT has gained momentum and widespread diffusion since the early nineties.

This family of technologies includes hardware such as personal computers, laptops,

routers, and servers, as well as smartphones and their associated set of applications

based on heavy use of the Internet. ICT also includes the whole set of applications

and software. All together, ICT (and the Internet) have evolved as a complex system

of interconnected technologies (Greenstein 2020) — a property that applies to AI

too, as we shall see. ICT hardware and software are key to the development of AI.

The use of ICT applications generates large amounts of data that can be exploited

statistically, and AI models run on hardware that provides the necessary computing

power.

Figure 2 depicts ICT-related investment per employee in the EZ, the US, and

the four major EZ countries from 2000 and 2019. It focuses on three types of invest-

ments, calculated per employee: (i) investments in ICT equipment (servers, routers,

computers, etc.); (ii) investments in ICT services such as software, programs and

databases; and (iii) investments in research and development (R&D). We observe

the following:

• In terms of R&D investment, the gap between the US and the EZ, which was

already large in the early 2000s, is widening in absolute terms (from €1,000

to €2,000 per employee over the period) to represent more than twice the

European effort in 2019. What we find most worrying is that this widening
6https://www.project-syndicate.org/magazine/ai-is-part-of-larger-technological-revolution-by-

carlota-perez-1-2024-03 — last access August 2024).
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gap is the result of rather uniform behavior on the part of the main European

economies. For both Germany and France, this gap, which was rather small

until 2005, is multiplied by 10 for France and by 5 for Germany at the end of

the period.

• Concerning investment in ICT equipment, America’s singular achievement is

even more impressive. Initially close to European levels, this investment is

growing steadily in the United States, but remaining constant in the EZ. The

comparison is here is quite telling. Investment per job remains at between 500

and 700 euros per year over the entire period in the EZ, whereas it reaches

2,500 euros in the United States, a nearly five-fold increase over the period in

question.

• Concerning investment in software and databases, and leaving aside the French

case, there is no reason to be optimistic. The US-EZ gap in investment per job

in software and databases has increased 12-fold, from €200 to €2,400 over the

two decades. France stands out in terms of volume, but the trend is not very

positive: French investment has doubled, but US investment tripled during

the same period.

Overall, the gap between the EZ and the US with regard to private investment

stood at around 150 billion euros in 2000, rising to a worrying 600 billion euros in

2019.

Summary AI is the latest advance in ICT technology; hence, tracking the
dynamics of ICT investments provides insights into Europe’s po-
sition compared to the global frontier. The EU trails the US in
all types of private ICT investments (equipment, services, research
and development), and the gap has been increasing over time.
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In order to understand the sources of these investment gaps, we decompose the

investment growth rate as the sum of the sectoral growth rates, weighted by each

sector’s share of total investment, at the start of the period. We classify all of the

sectors that make up the market economy by type of sector as follows: (i) high-tech

industries (excluding ICT production); (ii) ICT production industries; (iii) other in-

dustries, construction, and public utilities; (iv) high-value-added services (excluding

ICT services); (v) ICT services; and (vi) other services. This classification seems

relevant to us because it distinguishes ICT production activities (whether manufac-

turing or services) from other sectors that use ICTs as inputs in their production.

Figure 3 displays the growth rate of each type of investment per employee, distin-

guishing each sector’s contribution. Overall, while Figure 2 indicates that the gap

between the US and European countries increases in every sector (except France

for investment in software and databases), Figure 3 shows a reinforcing mechanism,

with the US investment growth rate higher than all other countries in all ICT types

(except for Spain in R&D).7 The domination of the US investment in R&D both in

volume and in growth rate is not surprising. Figure 3 shows that the main contribu-

tors to American R&D investments are in the ICT services sectors. It is reasonable

to assume that this result is due to the “GAFAMs effect”.8 The returns from the

exploitation of large datasets (especially due to cross-domain network externalities),

market domination in cloud services, digital advertisement and application mar-

kets, and the expected gains from the rise of AI are prompting tech giants to invest

massively in R&D.
7Focusing on the Spanish exception in the evolution of R&D investment, the results show

that Spain exhibits the highest growth rate in our sample. However, this result mainly reveals
a catching-up effect: Figure 2 shows that Spain lags behind all other countries when R&D per
employee is considered.

8The companies included in this acronym are Google (now Alphabet), Amazon, Facebook (now
Meta), Apple, and Microsoft.
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Growth in investment in databases and software is mainly due to the pull of

the services sector in general, regardless of the country. What distinguishes the

US from other countries is the significant contribution stemming from high value-

added services. This factor suggests that ICTs are spreading throughout economic

activities more rapidly in the United States than in Europe. Italy stands out for its

low growth rate, with services making virtually no contribution to the growth of this

investment. The case of Spain is, again, the outcome of a catch-up effect. Finally,

the US-EZ comparison of the sources of growth in investment in ICT equipment

is particularly enlightening. Above and beyond the difference in growth rates, the

contribution of the various sectors is relatively similar between the two regions of

the world, except with regard to ICT services. In the EZ, the contribution of

ICT services to growth in investment in ICT equipment remains low, whereas it

amounts to 4.5 percentage points in the United States. This fact alone explains the

observed investment differential. Our interpretation is that the specific dynamics

of investment in ICT equipment in Figure 2 is the result of the massive investment

by ICT services, meaning, essentially, those provided by GAFAMs and other large

US companies. In other words, intangible investments in R&D and software and

databases is evolving in close association with tangible investments in ICTs. Both

complement one another and make them operational, productive, and profitable.

It appears that in the US, the ICT services sector is responsible for the observed

investment gap, driven by substantial investments in R&D and digital equipment.

The other service sectors (essentially high value-added services) are adopting these

innovations in their own production processes by investing in software and databases.

The overall impression is one of the rapid digitization of the economy, driven by large

companies and spreading into the entire US production system. A direct implication

of this evidence is that ICT developments require scale (and possibly “champions”
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capitalizing on investments) and complementarity in order to produce transformative

effects.

Is Europe on track to achieve ICT-driven economic gains? Unfortunately, the

answer is that it is less likely to be able to do so. The European case is worrisome for

two reasons. First, the lack of investment in ICT services means that the economy

is digitizing slowly. Second, the absence of giants in digital services translates into

fewer investments in R&D and ICT equipment, both of which are prerequisites

for the development of AI. If large databases are the blood of AI, ICT equipment

represent its backbone.

Summary When decomposing the growth rate of the different types of ICT
investments by sectors, it appears that the main contributors of su-
perior American ICT R&D and equipment investment growth are
ICT services, likely driven by large tech corporations (mostly, the
so-called GAFAM). Overall, the evidence indicates that the EU’s
position as a follower results from the slow diffusion of digital tech-
nology across the economy, and a lack of large investors (European
“champions”).

Catching up would imply increasing private investments in Europe by €630 bil-

lion a year, amounting to over 5% of the EZ’s GDP, for the set of assets considered

here alone (ICT equipment, R&D, software and databases), and assuming that US

investment remains constant. This is equivalent to an increase in investment of €61

billion for France, €57 billion for Germany, €28 billion for Italy, and €16 billion for

Spain. Without the combination of upstream sectors supplying ICT services and

equipment and downstream sectors adopting these innovations, Europe will find it

more difficult to capture the fruits of the digitization of the economy.

The stylized facts we presented in this subsection are meant to illustrate the

challenge facing the EU if it aims to lead and be autonomous in the production
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Figure 2: Diverging paths in investment per employee
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Figure 3: Sectoral contributions to the compound annual growth rate of investment
per employee (2000-2019)
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of advanced digital technologies, with AI at the forefront. As some recent high-

level reports have highlighted (Fuest et al. 2024), for two decades the EU has been

locked in a “middle technology trap” centered on automotive manufacturing and

lacking scale and R&D expenditures outside that industry. Massive financial efforts

must be made to escape the trap, which open up room to discuss (industrial) policy,

resourcing and investments at the continental level (Fontana & Vannuccini 2024). As

this theme goes beyond the scope of the report, we now return to our key question:

is the EU capable of producing a complex breakthrough technology such as AI?

Summary Sizeable financial investments are required to cover the European
investment gap in ICT (AI’s technological backbone) and to es-
cape its “middle technology trap”. This situation indicates that a
discussion on the continental financing of investments is needed.
In addition to resourcing, being able to lead with regard to ICT
and AI developments requires competences.

2.2 On technological sovereignty and the weakness of European AI

The question of whether the EU has the competences to produce AI can be rephrased

in terms of whether the EU can develop the technology autonomously, or if it has

“sovereignty” over it.
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Insert 1. On sovereignty

The notion of sovereignty is a cornerstone of political and legal theory, and
as such is subject to a variety of definitions and interpretations. Historically,
sovereignty has been defined as the ability of an individual or a governing body,
whether as a factual matter or as the outcome of a rule that assigns authority,
to act as a sovereign without the jurisdiction of any other individual or entity
(Eleftheriadis 2010). In other words, sovereignty is a manifestation of power
and of independence in the ability to establish and enforce one’s rules. It is
“the power to be able” (Ganascia et al. 2018) or, to use the “classic” Schmittian
quote, sovereign is the entity “who decides on the state of exception”.

When focusing on the particular polity represented by nation-states, sovereignty
can be seen as a state’s ability to enforce its will, particularly in areas such as
economics, defense, and security. As the notion of sovereignty is traditionally
linked to the national scale, the very idea of European sovereignty is the subject
of discussion. Given that the EU is a novel type of polity, currently somewhere
between a federal and a confederal system, the nature of its sovereignty is an
ever-evolving matter and an emerging paradigm of analysis in political theory
(Elazar 1996).

Increasing international rivalries (OECD 2023) have raised questions about Eu-

ropean sovereignty in the context of digital transformations. Furthermore, the

COVID-19 pandemic stressed the importance of Europe’s digital capacity to ensure

Europeans’ social and economic well-being. More generally, as we saw in subsection

2.1, the lack of European champions promoting digitalization and, as a consequence,

the extensive reliance on foreign digital platforms and related applications, coupled

with the persistent lag of European countries’ investment in digital technologies, has

intensified discussions about the defense of European values, and of its economic in-

dependence and industrial competitiveness. The challenge is not only about the

ability to regulate the digital economy to ensure data privacy, but also about how

to avoid technological dependencies on other regions or monopolistic private com-

panies (European Council 2020).

Discussing European sovereignty over key technologies is, at the core, a mat-

ter of technological sovereignty, that is, the ability to access relevant technology or
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components, either domestically or through non-dependent relationships with other

economic regions (Edler et al. 2023). Technological sovereignty involves the capac-

ity to make autonomous decisions about technology development, deployment, and

regulation without undue influence or dependence on external entities. In a global

digital ecosystem that relies on interconnected value chains, technological fragmen-

tation and protectionist strategies could weaken the ability of nations to control

their digital destiny, including control over the entire AI supply chain (Larsen 2022).

Therefore, access to the necessary technological resources and levers is critical for

guaranteeing the EU’s economic independence and industrial competitiveness in the

long-term. As a matter of principle, technological sovereignty is not a static, nation-

alistic, defensive concept focused on erecting legal protection barriers. Rather, it

should be understood as a dynamic concept associated with building the capability

to develop adaptive capacities (Edler et al. 2023). This concept combines the abil-

ity to develop the required competences and resources to deliver technologies that

are pivotal for competitiveness and growth, along with the capacity to source the

complementary technologies and assets needed to produce industrial applications.

Summary Increasing international rivalries and the reliance on overseas re-
sources and platforms have focused political attention worldwide,
and in the EU in particular, on autonomy and sovereignty in the
domain of technology — technological sovereignty. Technological
sovereignty can be seen as the capability to develop a technology
without external dependencies.

Rapid advances in AI and its global scope of application — as well as its po-

tential dual-use nature in the domain of defense — have placed the technology at

the forefront of the discussion on technological sovereignty, and the related issue of

AI-dedicated industrial policy (Kak & West 2024). While the race to nurture AI
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national champions can be seen as a rather inward-looking, nationalistic strategy,

AI can be considered a “strategic asset” (Ding & Dafoe 2021). Such a view would

position AI as a perfect candidate for policy support, especially if this policy is

European rather than national. For instance, in the domain of science and inno-

vation, AI can be seen as a “general-purpose invention in the method of invention”

(Cockburn et al. 2018), as it introduces a new, data-driven, inductive logic to the

exploration of knowledge and design spaces. AI can have profound implications

for research and development methods and product development processes across

many different applications and sectors (LeCun et al. 2015, Cockburn et al. 2018).

Given its potential, AI has attracted increasing investments (Maslej et al. 2024). A

full-fledged AI industry has emerged. Its implementation is enhancing innovative

product capacities and boosting the growth of adopters (Babina et al. 2024). While

the real impact of AI on productivity might turn out to be rather modest (Acemoglu

2024), the narrative around AI’s transformative impact has intensified the discus-

sions on technological sovereignty. The EU, as a supranational entity, is struggling

to become a leading force in AI and is increasingly wary of strategic dependencies

(Vicard & Wibaux 2023). This situation reflects concerns about being relegated

to an unfavorable position in global value chains and losing strategic autonomy

in the global technological system (Reale 2023, European Commission 2021, Euro-

pean Council 2020)9. As a result, the European Commission President Ursula von

der Leyen emphasized technological sovereignty in her agenda for Europe (Von der

Leyen 2019). The idea embraces the need to build capacity in key technologies such

as quantum computing, 5G, and AI to reduce the risk of dependency, while pro-

moting technological standards and regulations in line with European values. AI

figures prominently amongst the EU policy priorities. One example is the idea of
9Annex 1 of the ”Statement to accompany the launch of the full EIC”
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supporting “AI factories”, namely, the provision of AI-optimized computing power

to economic actors (mainly startups) to foster innovative activities.10

As we mentioned, the attention devoted to technological sovereignty and the con-

cerns about potential dependencies are a direct consequence of re-emerging global

rivalries. In particular, the race for technological and industrial supremacy between

China and the US might compel European states to import their AI software and

applications. The call for technological sovereignty reflects European countries’ con-

cerns about losing the ability to act autonomously in a global technological system

that is increasingly fragmented and in which trade and industrial policies are used

for geopolitical ends. The clearest example is the recent American export bans on

semiconductor fabrication equipment. At the same time, and perhaps more concern-

ing, one must consider the increasing power of large tech companies (“Big Tech”)

to shape the technological landscape as well as different markets. As we docu-

mented in subsection 2.1, Big Tech is likely the major element explaining the gap

between Europe and the US in ICT (services) investment growth. The anticompeti-

tive and innovation-harming role of Big Tech in AI and beyond is being increasingly

placed under the spotlight, as these “intellectual monopolies” shape a novel tech-

nological regime around their objectives and appropriate most of the returns on

global innovation (Rikap 2023). Big Tech’s agenda may not align with long-term

national competitiveness or employment objectives (Acemoglu 2021, Acemoglu et al.

2022). In fact, their increased computation capacity, combined with access to large

datasets, has provided a disproportionate advantage to large firms such as the al-

ready mentioned GAFAM (to which one can add Nvidia and Tesla), which are

better positioned than smaller firms to leverage their AI investments and growth

opportunities Mihet & Philippon (2019), Calvino & Fontanelli (2023), Babina et al.
10https://digital-strategy.ec.europa.eu/en/policies/ai-factories.
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(2024). This cumulative advantage has generated increasing polarization in capabil-

ities (both in resources and competences), leading to brain-drains from academia to

the private sector and to reductions in the diversity within AI research (Frank et al.

2019, Ahmed & Wahed 2020, Klinger et al. 2020, Ahmed et al. 2023). Furthermore,

Big Tech’s capital investments in AI-related hardware such as Nvidia’s graphical

processing units or GPUs are draining the supply of the key inputs of AI systems,

which are then allocated exclusively to commercial uses rather than to pursue goals

that favor the public interest.11

Summary Rapid advances in AI, estimations of its widespread impact, and
the emergence of a full-fledged industry around it have turned the
technology into a “strategic asset”. Combined with the awareness of
the dependency of AI developments on a handful of overseas actors,
AI has become a key focus for policies aimed at strengthening
technological sovereignty.

As we outlined in Insert 1, sovereignty — even in the form of technological

sovereignty — is a rather broad notion. Alternatively, one can refer to the idea of

strategic autonomy. Strategic autonomy is “the ability, in terms of capacity and

capabilities, to decide and act upon essential aspects of one’s longer-term future in

the economy, society and their institutions” (Timmers 2018). The advantage of fo-

cusing on strategic autonomy is that policy makers in the EU have already begun to

design strategies and actions around the concept. In particular, in the field of trade

policy, the European Commission has set forth the idea of open strategic autonomy

(OSA) as a guiding principle. OSA is conceived as the idea of giving priority to

autonomy though without ruling out cooperation if feasible. It is defined as “the
11See, for instance, the distribution of compute across private and public actors as provided by

https://www.stateof.ai/compute (last access: July 2024).
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ability to shape the new system of global economic governance and develop mutually

beneficial bilateral relations, while protecting the EU from unfair and abusive prac-

tices, including to diversify and solidify global supply chains to enhance resilience

to future crises”.12 From this definition, it is clear that for the EU a key dimen-

sion of autonomy (and, thus, of sovereignty) relates to the vulnerability of supply

chains. This concern aligns with our choice to measure integration throughout the

AI knowledge production value chain as an indicator of European sovereignty in AI.

For the EU (and more generally), increasing competitiveness as well as sovereignty

in a strategic and transformative technology such as AI means developing compe-

tences to innovate that span the entire value chain of the technology. In turn,

competence building is an area of intervention for science, technology, and indus-

trial policies. The idea that AI policy is (also) a matter of such policies is just

beginning to gain traction. The dominant approach of the EU towards AI and more

generally digital technology, platforms, and marketplaces has been that of protect-

ing citizens and favoring market contestability. These principles inspired the most

important European horizontal regulation exercises in the field: the General Data

Protection Regulation (GDPR), the Digital Markets Act (DMA), and the Digital

Services Act (DSA). The AI Act, just entered into effect, is another piece of the same

puzzle. In this respect, the EU political economy of AI has been one geared towards

the protection of rights, as well as towards addressing one of the challenges to EU

technological sovereignty in AI, namely, the dominance of Big Tech in upstream as

well as consumer markets.

While EU horizontal regulations in the digital realm have generally been a suc-

cess and boosted the so-called “Brussels effect”, with the rest of the world following
12See the 2021 European Commission Staff Working Document — Strategic dependencies and

capacities (last accessed: July 2024).
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and imitating European legislation, less has been done by the EU on the issues of

competitiveness and autonomy, despite the attempt of the European Commission to

design and update a coherent industrial strategy (Fontana & Vannuccini 2024). Or-

chestrating initiatives aimed at addressing the lack of continental champions in the

hardware and services layers of ICT have not produced successes yet; for instance,

the slow-moving Gaia-X project of a federated European cloud infrastructure13 tes-

tifies to the difficulty of building alternatives to the early American hyperscalers,

who enjoy path-dependent gains from their head start in the market.

Overall, we are witnessing an acceleration of public interventions in the econ-

omy, especially after the introduction of the Inflation Reduction Act (IRA) and the

CHIPS and Science Act in the US (Kleimann et al. 2023). Nevertheless, there have

been few specific provisions regarding AI. An exception is the pilot of the National

AI Research Resource (NAIRR) launched by the Biden Administration and aimed

at sharing computing resources amongst AI actors to lower the entry costs into the

field.14 The European Commission has been working in a similar direction with

the already mentioned “AI factories”. In line with the NAIRR, the EU initiative

consists mostly of sharing high performance computational capacity — a key in-

put into the production of AI systems — re-orienting the existing allocations of the

European budget rather than providing additional resources to increase competitive-

ness and competences with regard to AI. At the moment, the philosophy informing

the European Commission’s initiative is that of democratizing AI by providing an

encompassing AI innovation package.15

13See, for instance, https://www.politico.eu/article/chaos-and-infighting-are-killing-europes-
grand-cloud-project/ (Last accessed: July 2024)

14https://nairrpilot.org/. Some have pointed out how the design of this type of policy initia-
tive, which builds on public-private partnerships and licensing agreements, risks favoring Big Tech
rather than leveling the playing field: https://foreignpolicy.com/2024/02/12/ai-public-private-
partnerships-task-force-nairr/.

15See here
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Summary As of now, the EU approach to AI policy (in particular, the AI
Act) has followed the trajectory of its other horizontal regulatory
efforts (GDPR, DSA, DMA) with user protection at its center.
However, fostering competitiveness and technological sovereignty
in AI is also a matter of investment and, thus, of science, tech-
nology, and industrial policies. The EU can make major gains by
concentrating on the development of competence and the coordi-
nation of innovative efforts.
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3 Technological integration as sovereignty in AI

3.1 AI as a complex technological system

More than just a technology, AI is a system technology (Sheikh et al. 2023, Dibiaggio

et al. 2022, Vannuccini & Prytkova 2024). In a nutshell, AI systems are “prediction

machines” (Agrawal et al. 2022) consisting of a collection of complementary hard-

ware and software components, plus data and talent. As a technological system,

AI can be defined as a set of technologies or techniques whose relationships form

a coherent whole, ensuring a function or a set of predefined functions dedicated to

one or several specific applications (Gilles 1978). The coherence of the system is

determined by the compatibility and complementarity of suitable techniques that

facilitate the execution of a specific function. Thus, the effectiveness of using AI

in industrial or user applications is contingent upon the ability to access comple-

mentary technologies and assets. It also depends on the capacity to develop the

necessary skills to amalgamate all these components into a unified system.

Each AI technology offers different algorithms or techniques that provide alter-

native solutions to a class of problems associated with a function. As an emerging

technological system, characterized by i) radical novelty, (ii) fast growth, (iii) coher-

ence, (iv) a strong impact, and (v) uncertainty and ambiguity (Rotolo et al. 2015,

Bianchini et al. 2022), AI relies on various technological families that may be more

or less specific to a function (Corea 2019). In other words, different types of algo-

rithms can be used to perform similar functions. For example, expert systems or

logic programming belong to the technological family of symbolic AI. They are rule-

based algorithms that emulate human decision-making processes and prove useful

in developing applications that require interpretability and transparency, such as
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medical diagnosis, legal reasoning, or financial analysis. Artificial neural networks

(ANNs) such as convolutional networks (CNNs) or feedforward neural networks,

which belong to the family of machine learning algorithms, may also be used in the

context of medical diagnosis or financial analysis. Thus, the choice of the design and

the selection of the algorithms depend on the specific task at hand, the nature of

the data, the capabilities of the different techniques, and the problem requirements

needed to perform the expected functions in the context of an application.

The frequent evolution of technologies and their associated algorithms broaden

the scope of the functions and applications that AI can leverage. Advancements in

AI techniques prompt further inventive opportunities in complementary technolo-

gies or applications, thereby increasing the incentives for their adoption (Bresnahan

2003, Aghion et al. 2009). New algorithms are often disclosed on open platforms

and freely shared, thus often becoming public knowledge16. Subsequent spillovers

generate positive feedback between technical inventions and the co-invention of func-

tions that create opportunities for further innovations. New functionalities shape

the design of products and services, reinforcing complementarities along the value

chain (Rosenberg 1982, Mowery 1992, Nelson & Rosenberg 1993). However, in an

era of emerging technological development, technological options compete with one

another. The technical choices that adopters make and the uncertainty about the

performance of the products may lead to a reluctance to invest. The development

of downstream phases, including the development of applications and their market

launch, hinges on complementary and often irreversible investments. In the con-

text of an emerging technological system, the performance of alternative techniques

can vary greatly and is difficult to predict accurately. As the number of potential
16The firm’s ability to embed algorithms in applications, along with their associated specific

complementary investments, ensure that the developers can capture the value of the new algorithms
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options increases, each with its own trajectory, anticipating the properties of each

technique and its functional performance across all applications becomes daunt-

ing. The uncertainty and ambiguity inherent in the dynamics of the structure of

complementarities along the value chain, coupled with path-dependent investment

trajectories, are likely to generate dynamic coordination failures. Consequently, the

more that techniques, functions, and applications are tightly coupled, the greater

the cost of sub-optimal design choices as well as the cost of switching from one

design to another. These choices can lead to delays in adoption and reductions in

the necessary investments throughout the value chain. Thus, the risk of prema-

turely committing to an inferior design or being locked into sub-optimal options

is inherently high, underscoring the need to preserve diversity in the technological

environment (David 1985, Arthur 1994, Aghion et al. 2009).

Summary AI is a system technology. Its services are deployed on the ba-
sis of the alignment and complementary efforts of hardware and
software components. Since different AI techniques can fulfill var-
ious functions across different applications, dynamic coordination
failures may occur when actors favor one technique over others,
potentially disrupting the AI value chain.

3.2 The Technique-Function-Application AI value chain

If the production of AI technology is a systems effort, as we described in 3.1, we

must identify the root causes of competitiveness and technological sovereignty in AI

or their lack across the entire system. Our approach is to map the competences

needed to innovate in AI across a stylized series of steps, which ranges from up-

stream techniques to functions to downstream applications. We call this structure

the Technology-Function-Application (TFA) model, or value chain. This is not a
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traditional value chain, or a full-stack representation of how value is accrued in the

production of AI systems stage by stage. Rather, it is a simplified picture of how

AI innovation is developed, from the more generic software developments to their

adoption into specific function and practical applications. As we will see, the TFA

model is particularly useful as it is tailored on the features of the patent data we

use. Our representation of the value chain does not impose a linear model of in-

novation, whereby new applications necessarily rely on new techniques generating

novel or higher-quality functions. As is well-known, innovation often results from

learning by using (Rosenberg 1982) as a result of recurrent trials and errors, experi-

mentation processes, and feedback. However, while a direct line from techniques to

applications would trivialize the many non-linear circuits driving innovation in AI,

the stylized value chain does have the benefit of being able to capture the idea that

an AI innovator can specialize in one or more stages, and that — as we hypothesize

— integrating competences along all stages may result in higher rates of innovation.

The rationale for working with a stylized TFA value chain of AI is grounded in

the idea that solving specific AI-related problems (often approximated by what we

call functions) involves developing algorithms and methods that build on specific

approaches or AI paradigms, such as symbolic or probabilistic AI. Each paradigm

can be based on an array of techniques with specific properties, which can be more

or less adapted to address certain types of problems. For instance, within the class

of deep learning techniques, convolutional neural networks (CNNs) are the state of

the art in image recognition tasks, while generative adversarial networks (GANs)

have been used extensively to produce images. Reinforcement learning approaches

have been successful in the AI-in-science context (e.g., in tasks related to address-

ing the protein folding problem), while language models such as the already cited

Transformer have been pivotal in dealing with prediction tasks involving text embed-
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ding. While industrial actors have bet on language models becoming the dominant

foundational multi-modal design underlying all AI commercial applications, a large

variety of techniques continues to exist in the AI world, and involve inventive activ-

ities. Therefore, to avoid the risk of ignoring techniques less hyped but still widely

developed, we focus on a variety of AI techniques and use data about them that

span a long time period.

AI techniques give rise to specific AI functions. These functions are employed in

different AI applications, which approximate techno-economic activities. As a result,

we have a many-to-many relational structure: different techniques can feed different

functions employed in different applications. Thus, we estimate the strength of the

links between technologies depending on the frequency of their use. For example,

we assume that the more a function such as image production uses a technique such

as GAN, the more useful GAN is for producing images.

Summary A useful way to capture the “systems-ness” of AI — and to iden-
tify the competences that actors have to develop it — is to map
its development through a stylized value chain that encompasses
techniques (T), functions (F), and applications (A).

3.3 Integration, sovereignty, and competitiveness

In such a complex technological environment, integration capabilities become crit-

ical. They make the difference between an actor capable of developing the system

autonomously and one who is not. Integration consists of shaping, selecting, and

combining techniques dedicated to specific application functions (Jacobides et al.

2009), while maintaining the system’s coherence. Integration requires specific com-

petences to guarantee coordination across evolving boundaries of technological spe-
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cializations with circular, interlocking, and often time-delayed relationships (Brusoni

et al. 2001). Furthermore, combining different technologies requires dynamic adjust-

ments to ensure compatibility and maintain synergy. Therefore, integration is not

just about merging different technologies. It is the ability to coordinate the different

yet complementary competences possessed by different stakeholders. More precisely,

we define technological sovereignty in AI as in Insert 2.

Insert 2. Technological sovereignty as domestic integration along the AI value chain

In a competence-based framework, technological sovereignty in AI can be sum-
marized as the ability to mobilize and integrated technological competencies
domestically along the whole AI innovation value chain that ranges from the
elaboration of new or improved algorithms (techniques), the development of
new AI-based functions, to the concrete embodiment of AI techniques and
functions into new applications.

We claim that integration is a pivotal element in achieving leadership in AI.

To justify our claim, we relate the concepts of integration, competitiveness and

sovereignty in AI as follows: an actor (a country, or the EU) can display special-

ization in one, two, all, or none of the layers of the TFA value chain of AI. If the

actor exhibits a relative advantage in AI innovation within one of the TFA domains,

we regard it as having a comparatively high degree of competence in producing

new AI knowledge in that domain. The greater the number of domains this actor

specializes in, the more transversal its competences become, leading to greater au-

tonomy in producing all elements of AI innovation, from techniques to industrial

implementations. Integrating complementary AI innovation competences in T, F,

and A can serve as a proxy for overall competitiveness and autonomy. Specializa-

tion in AI-related innovations in a specific industrial application, such as advanced

driver-assistance systems (ADAS) for self-driving cars, can be linked to the ability

to develop AI-related functions that interpret signals captured from cameras, radar,
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and lidar sensors (e.g., image recognition combining image identification, image clas-

sification, object detection, scene understanding, and specific object recognition)

based on specific convolutional neural networks (Fujiyoshi et al. 2019). Missing

competences in the domain of convolutional neural networks requires resorting to

other actors’ competences and therefore reduces autonomy. Given that convolu-

tional neural networks are used in many different functions, lacking expertise in this

area reveals potential weaknesses in the ability to develop cutting-edge solutions in

several industrial domains.

Beyond missing technological competences, a lack of integration in complemen-

tary competences can reduce strategic autonomy. As suggested, integration involves

seamless access to the technological competences essential for application develop-

ment. Developing competences in complementary techniques, functions, and appli-

cations requires capabilities not only to design and develop technologies, goods, and

services, but also to develop the appropriate supply chain and invest in related re-

sources such as manufacturing and distribution channels. Thus, integration amounts

to much more than mixing and matching relevant competences and resources. In-

tegration requires the ability to coordinate complementary activities, if one is to

enjoy synergies between the resources throughout the value chain. It also involves

the ability to identify and manage compatibility and overcome the other technical

challenges required to design innovative solutions.

However, integration is costly and risky. AI-related techniques and functions

developed in the context of a specific application may be difficult to redeploy and

reuse in another context. Therefore, for a company, investing in an integrated value

chain may not be wise for several reasons. First, the uncertainty and ambiguity

inherent in emerging technologies increase the obsolescence of the relationships and

the level of complementarity among techniques, functions, and applications. Con-
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sequently, investments to develop an integrated value chain might be effective in

the short run, but might also prevent adaptation and create rigidity in the long

run. Second, appropriation may be difficult. As is well known, AI algorithms are

information goods, making them easy to reproduce and imitate. Thus, capturing

their value relies on investments in specific complementary resources (Teece 1986,

1998). As we explained, when dealing with emerging technologies characterized by

uncertainty, ambiguity, and obsolescence, these are risky investments, prompting

firms to outsource AI development to partner experts.

Integration at the national level has a different meaning and can be considered

as a proxy for and evidence of technological sovereignty and strategic autonomy.

Creating networks at the national level has several benefits in the long term. First,

promoting the integration of technologies such as AI generates positive externalities

downstream. For instance, a new technique may open up innovation opportunities

throughout the value chain down to applications. Second, integration is not the

result of a single investor’s decision. It is an outcome of several stakeholders’ ex-

pertise and investment. In other words, no single entity incurs the risks associated

with integration. Thus, integration capabilities — the ability to connect actors en-

dowed with complementary competences — result from the ability of local actors

to develop expertise and invest in complementary resources to explore and exploit

innovative solutions. Integration can also have potential spillover effects in a larger

ecosystem consisting of startups, partner firms, and downstream customers (Teece

1998). Hence, the ability to mobilize complementary expertise quickly requires spe-

cific forms of coordination such as innovation ecosystems including universities, local

startups, large corporations, and infrastructures and support services such as tech-

nology transfer offices (TTOs) and patent offices that contribute to the innovation

capacity of the ecosystem’s members.
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Furthermore, integration at the national level is also critical if the country wants

to benefit from investments throughout the value chain. Missing competences and

reliance on the expertise of foreign actors prevent a country from reaping the full

rewards of its investments. Given that new techniques may generate upstream and

downstream innovation opportunities, downstream application producers might pre-

vent a country from capturing the value of these opportunities. An obvious illustra-

tion is the benefits of scientific discoveries by public universities that are exploited

abroad by foreign corporations. It is a missed opportunity to capture the value

generated by local investment in research and development competences and infras-

tructure. Giving up the ability to develop new markets or improve products and

services also has consequences at the aggregate level. The inability to exploit syner-

gies and spillovers throughout the value chain also creates blinders about seeing the

opportunities inherent in local investments in complementary resources such as man-

ufacturing, marketing, or distribution, with significant implications for productivity

and employment.

As we will see in Section 4, our data and methodology allow us to operationalize

this idea by measuring specialization quantitatively and aggregating it across AI

TFA for the EU and the countries in our analysis.
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Summary Integration reflects the ability to coordinate potentially comple-
mentary activities throughout the value chain and develop inno-
vative solutions. The uncertainty, ambiguity, and obsolescence in-
herent in emerging technologies make investments in specific or co-
specialized resources costly and risky for a single firm. However,
at the national level, integration can strengthen sovereignty and
competitiveness. Integration is an outcome of several stakehold-
ers’ expertise and investment. It involves the ability to mobilize
complementary resources and generate innovation opportunities for
local actors throughout the value chain. In brief, integration indi-
cates an institutional environment that facilitates the coordination
of innovation ecosystems and predicts innovative performance, with
obvious effects on productivity and employment.

3.4 Technological sovereignty versus productive specialization

Defined as a capability to develop technology without external dependencies, tech-

nological sovereignty poses a direct challenge to the classical economic theories that

advocate for specialization in international trade, as initially proposed by David

Ricardo, further developed in the Heckscher-Ohlin model, and by Paul Krugman’s

New Trade Theory (inter alia Krugman 1979).

The Heckscher-Ohlin model builds on the concept of comparative advantage

by arguing that countries will export goods that utilize their abundant factors of

production (e.g., labor, capital) and import goods that require factors they are

less endowed with. This model suggests that countries benefit from trading based

on their factor endowments, thereby promoting specialization. Krugman (1991)

suggests that economies of scale and network effects lead to specialization and trade.

It argues that countries can benefit from specializing in certain industries, gaining

from increasing returns to scale and resulting in more varied and cheaper products

for consumers.
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Instead, technological sovereignty focuses on building domestic capabilities and

infrastructure to develop technologies independently, regardless of factor endow-

ments. This could lead to the development of industries where a country does not

have a natural comparative advantage, driven by strategic considerations like na-

tional security, reducing dependency, or long-term economic resilience. In fact, the

pursuit of technological sovereignty may limit the potential for exploiting economies

of scale in a globally efficient manner.

If countries prioritize self-reliance, they may opt to develop smaller, less efficient

industries domestically rather than rely on international trade. This could reduce

the overall gains from economies of scale and limit the variety and affordability of

goods and services available to consumers, contradicting Krugman’s emphasis on the

benefits of trade and specialization. Technological sovereignty often arises from con-

cerns about national security, economic independence, or strategic interests. These

considerations may prioritize stability, control, and security over the efficiency gains

promised by trade and specialization theories. The COVID-19 pandemic and re-

cent geopolitical tensions have highlighted the vulnerabilities of highly specialized

global supply chains. Technological sovereignty emphasizes resilience over efficiency,

arguing that countries should develop critical capabilities domestically to avoid dis-

ruptions and dependencies.

Summary Technological sovereignty challenges the classical and modern trade
theories by prioritizing strategic autonomy and independence over
the economic efficiency gains derived from specialization. While
specialization can lead to greater global efficiency and mutual ben-
efits under stable conditions, technological sovereignty focuses on
reducing vulnerabilities and ensuring that countries can indepen-
dently navigate global uncertainties, potentially at the cost of for-
going some benefits of international trade.

51



A word should be said about our definition of technological sovereignty and the

broader notion of economic sovereignty, as discussed in Rodrik (2011) and Guillou

(2023). While both concepts are related, they focus on different aspects of a nation’s

autonomy. Economic sovereignty refers to a country’s capacity to make indepen-

dent economic decisions without external constraints, encompassing areas like trade,

fiscal policies, and regulation to minimize dependence on foreign entities. In con-

trast, technological sovereignty specifically involves the ability to develop, produce,

and innovate new technologies locally, ensuring control over the entire technological

process and reducing reliance on foreign technologies. While economic sovereignty

covers a wide range of economic policies and decisions, technological sovereignty ze-

roes in on creating a strong ecosystem for innovation and technological development.

Thus, technological sovereignty can be seen as a component of the broader concept

of economic sovereignty, providing the technological foundation that supports a na-

tion’s overall economic independence and resilience.
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4 Data and Methods

Our analysis of competitiveness and sovereignty in AI is based on patent data and

publications. We consider the granularity that this type of data offers as most ap-

propriate to address our research question, given our focus on technology and com-

petences. Many different empirical analyses of AI exist that utilize various sources

of data. Examples include information about industries and occupations (Prytkova

et al. 2024), firm-level surveys (Rammer et al. 2022), and research grants (Lane

et al. 2024). However, most of these works measure AI take-up or its impact on

the general economy. We look at the reverse problem: given the potential impact

of AI, how can we identify the factors that promote success in developing the tech-

nology throughout its complex value chain? In what follows, we describe our data

sources, the protocols we used to identify the relevant documents, and the type of

quantitative analysis we conducted using them.

4.1 Data

The basic unit of information for our analysis is the patent document. A patent

grants its owner(s) rights over a piece of intellectual property, usually a technolog-

ical invention, preventing others temporarily from using the technology without a

licensing agreement. Therefore, patents should be seen as strategic elements of the

owners’ technology portfolios. They are a tool for increasing the incentive to develop

novelty, given the expected monopoly rents they provide to the inventor. Neverthe-

less, filing a patent is costly. In addition, patenting is not always an inventor’s first

choice for protecting intellectual property. The propensity to patent varies across

industries by virtue of the type of knowledge that is produced. Therefore, not all
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inventions are patented (Mezzanotti & Simcoe 2023). However, patent data provide

the broadest coverage of inventive activities in all technological domains. In addi-

tion, patents remain a good measure of innovation output when focusing on large

companies and R&D firms.

Patenting requires information disclosures, meaning that the technological con-

tent of patents must be made public. This requirement is key, because it provides

access to a source of data that is both rare and unique in terms of the richness of the

information it contains. By looking at a patent, we have access to a description of

its technological content through standardized classifications of technologies, patent

owners and locations, the nationality of the inventors, year of invention, etc. In this

report, we use PATSTAT as our main source of information regarding patents and

present it in Insert 3

Insert 3. Presentation of PATSTAT

Our source of information is PATSTAT, Autumn 2023 edition. It is produced
by the European Patent Office. PATSTAT is a systematic database of patent
applications and contains bibliographic data on more than 140 million patent
documents from major industrialized and developing countries. More precisely,
PATSTAT retrieves all patents from the United States Patent and Trademark
Office (USPTO), European Patent Office (EPO), and World Intellectual Prop-
erty Organization (WIPO). The systematic nature of the database makes it
very attractive, although it is not exhaustive, either geographically or tempo-
rally. A very attractive feature of PATSTAT is the organization of information
into relational tables which makes its use very intuitive.

PATSTAT Global is a comprehensive repository that houses bibliographic data
covering over 140 million documents from major industrialized and developing
countries. In addition to a unique identifier, each patent is defined by: (i)
the year it was first filed; (ii) its owner(s) (individuals, public laboratories or
companies) and their addresses; (iii) its inventors’ names and addresses; (iv)
its technology class vector; (v) its title and abstract; (vi) references to prior
patents and scientific publications relevant to the invention in question; and
(vii) its patent family.

We wish to stress that the patents’ quality may vary a great deal from one

patented invention to another. By quality, we mean the economic value of the
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patents. We do not evaluate the technological novelty embodied in the invention.

In general, there are two ways to account for the inventive activity of an organization

or a country that results in intellectual property patent applications. First of all,

we can focus on patent families. In the terminology of PATSTAT, a patent family

means all patents referring to the same invention. For example, counting the number

of patent families is tantamount to counting the number of inventions, regardless

of their potential economic value. Second, we may instead focus on the patents

themselves and count the number of patents, not families. A direct interpretation of

patent counting is that it is the number of families, with each family being weighted

by the number of patents. Given that inventions with more economic value will yield

families with more patents, calculating the number of patents is similar to counting

a quality-weighted measure of the number of inventions, the adjective “weighted”

meaning weighted by the economic value of the invention.17

17See Insert 4 for more details on what a patent family is and why it matters.
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Insert 4. What is a patent family, and why is it important?

The patent family is a generic term in PATSTAT that qualifies the invention.
In a nutshell, a family groups a particular invention that is filed as different
patents in different jurisdictions under one record. For example, a fictitious
company named SPO-DGSCHAIR decides to protect its invention in France
exclusively using the National Institute of Intellectual Property (INPI). The
company then decides to extend its protection to Brazil, the United States,
South Africa, and China. In PATSTAT, doing so would result in four addi-
tional patents, although all relate to the same invention, namely, the same
family. In this work, we distinguish the number of patents from the number of
families. Our rationale is not so much to distinguish inventions from patents;
rather, comparing patents and families can help us appreciate the economic
value of the invention.

Let us imagine that in order to follow up on the success of its invention,
SPO-DGSCHAIR decides to extend its protection to Japan, and to all of the
countries in the Eurozone. Doing so would mean increasing the number of
countries to 21 (the 19 countries of the Eurozone, including France and Ger-
many, the United States, and Japan). There would thus be 21 patents for a
single invention. Obviously, expanding the protection of its intellectual prop-
erty to a large number of countries is an indication of the economic value that
the company hopes for or expects. This value would have to be distinguished
from another invention protected in only one country. Thus, the size of the
family, meaning the number of patents protecting the same invention, is an
indication of the economic value of the invention.

It must be stressed that AI-related inventions do not readily lend themselves

to patenting. As mentioned, patenting is a strategy. Organizations vary in their

propensity or incentives for revealing their inventive activities. For instance, while

Google (or its parent organization Alphabet) is well-known for being a leading actor

in AI, it is listed as only the 10th most frequent inventor in 2. One of the reasons,

beyond strategy, is that AI algorithms are software technology, and software can be

patented only when embedded in a tangible (hardware) solution using AI. In this

sense, as we anticipated in 1, our data might not cover some of the most recent

advances in AI software. However, it will capture hardware-embedded technology

that is pivotal to countries’ physical production, products and services and, thus,

productivity improvements.
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Our study uses AI patents for 1990-2021. We are aware that using a long time

span for the analysis can hide signals related to current trends and protagonists in AI

innovation. Nevertheless, we opted for measuring AI innovation and competences

over an extensive time span, because gaining competence is a non-trivial process

characterized by path dependence. Understanding gaps in European technological

sovereignty requires a structural, long-term view, that can be achieved only by

factoring in AI developments along a decades-long trajectory.

In addition to patents, our study also uses scientific publications to track the

evolution of AI-related scientific discoveries. We retrieved all papers in the Elsevier

Scopus database (2023 edition) that were presented at international AI conferences.

Scopus is one of the largest and most reliable abstract and citation databases of-

fering a comprehensive platform for academic research. It contains more than 90

million records published and provides global and regional coverage of scientific

journals, conference proceedings, and books (Baas et al. 2020). Scopus provides

comprehensive information about the publications, author and institution profiles,

including the year of the publication, and the name and the geographic location

of the author(s)’ affiliation. This information indicates the global distribution of

research contributions and collaborations. Focusing on scientific conferences, Sco-

pus includes content from 149,000 conferences and provides access to more than

11 million conference papers. To select publications concerned exclusively with AI,

we relied on conferences identified as the main AI conferences by Baruffaldi et al.

(2020). From Scopus, we retrieved all available proceedings of these conferences.

We obtained 330,362 publications from conference proceedings from 1989 to 2023.
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4.2 Identifying AI patents and publication

The essential information that makes it possible to identify AI patents is the de-

scription of the patent by means of its title, its summary, and its technology classes.

We used information from three patent classification systems (for details, see Insert

5).

Insert 5. Patent classifications

There are three major patent classification systems that differ in their detail
and structure: the International Patent Classification (IPC), the Cooperative
Patent Classification (CPC), and the File Index / File forming terms (FI/F).

The IPC is a hierarchical classification system used primarily to classify and
search patent documents according to the fields of technology to which they
belong. It thus serves as a tool for the orderly classification of patent docu-
ments, and as the basis for the selective dissemination of information and the
study of prior art in given fields of technology. The classification system con-
tains approximately 70,000 entries identified by classification symbols that can
be assigned to patent documents. These different classification sites are orga-
nized according to a hierarchical structure in the shape of a tree. The highest
level consists of eight sections corresponding to very broad technical areas.
These sections are subdivided into classes, subclasses, groups, and subgroups.

The CPC is an extension of the International Patent Classification, and is
jointly managed by the European Patent Office and the United States Patent
and Trademark Office. It is divided into nine sections, classes A-H of the
International Classification, plus a class Y which includes new technological
developments from the various sections of the International Patent Classifica-
tion.

Finally, the terms FI and F (File Index / File forming terms, or FI/F terms)
refer to the Japanese patent classification system. They contain 190,000 and
360,000 entries respectively that allow for the efficient search of patent docu-
ments. It should also be noted that the IFs and Fs are based on the Interna-
tional Patent Classification.

Another method of accessing the technological content of patents is using
keywords that a simple elaboration on technological classes would not be able
to grasp. Keyword-based approaches are increasingly used in order to navigate
data in a more explorative and unstructured manner (Ott & Vannuccini 2023,
Cockburn et al. 2018). This is indeed the path we followed for our exercise
with AI. In addition, in our identification of AI patents, we used the title and
summary of the patent to detect the presence of AI technologies.

Our selection of AI patents is inspired by the methodology developed by WIPO
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(WIPO 2019), to which we added an additional step. The WIPO methodology

consists of three building blocks of data from different selection strategies. Each

block builds upon the previous one.

1. Step 1: List of CPC codes specific to AI technologies/functions/applications

2. Step 2: Specific list of keywords in the titles and summaries of the patents

3. Step 3: Specific lists of CPC codes, IPC codes, and FI/F terms controlled by

another specific list of keywords

The combination of the three datasets obtained through these steps results in a

sample that represents all patents considered potential AI patents. Steps 2 and 3

are based on a search in the abstracts and titles of the patents of the keywords that

the WIPO proposed. We also added a number of terms such as generative AI tech-

niques that have emerged more recently. Although the majority of patent titles and

abstracts are written in English (approximately 80% for titles and approximately

90% for abstracts), some are written in other languages. Given that the keywords

in the WIPO list are in English, it is difficult to search through texts written in

other languages. Of the 36 languages used, we selected those which, according to

the WIPO report, are spoken in countries that play a relatively important role in

the development of AI (WIPO 2019). We translated the keywords into the follow-

ing 11 languages: French, German, Spanish, Portuguese, Italian, Russian, Chinese,

Japanese, Korean and Dutch. The last step was to apply Steps 2 and 3 to Japanese

patents that do not use a patent classification system based on the CPC or IPC

codes. To do so, we first retrieved the AI patents using the Japanese FI/F classifi-

cation terms. We then performed a full join on the patent IDs in order to retrieve

the corresponding IPC and CPC codes.
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This procedure allowed us to identify 96% of the patents from the Japanese

patent classification. In Step 2 we used the list of keywords from Step 1 to select the

patents. The third step was to select a list of patents by IPC, CPC, and FI/F terms,

and then filter them using the keyword list in Step 2. Finally, we built our own patent

databases by categorizing the patents into the AI TFA categories using an algorithm

we developed. We began by classifying a patent into a category/subcategory if the

CPC/IPC code allowed it through the WIPO classification. If not, we searched for

a series of keywords related to the category and subcategory in the abstract and/or

title of the patent. In this way, we built three databases of patents that corresponded

to the three categories of AI we considered: techniques, functions, and applications.

We also used this method to classify scientific publications about AI into the

three categories of TFA. However, there were three major differences in our approach.

First, given that our publications came from conferences devoted to AI, we did not

have to determine which publications were relevant. Second, unlike patents, publi-

cations are not classified in technology classes (IPC, CPC, FI/F classes). Hence, we

relied exclusively on our search for AI-related keywords in the titles and summaries of

the publications. Last, we did not consider publications associated with application

domains (the “A” in the TFA representation). We made this choice because publi-

cations usually focus primarily on advancing knowledge — in our case, introducing

new (or advanced) techniques and functions — rather than specific production is-

sues. Therefore, we assumed that scientific publications would be concerned with

the development of techniques and functions.

Figure 4 displays the evolution of the number of AI patents filed since 1970

(Panel 4a) and publications (Panel 4b). The two panels exhibit a similar trend with

an increasing rate of patent and publication production. Both panels show an initial

phase starting in the mid-nineties, and the post 2010 decade indicates an impressive
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Figure 4: The dynamics of AI-related patents and publications
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Sources: EPO PATSTAT (Ed. Autumn 2023) for patent data. SCOPUS for publication data. Authors’ own
calculations. The left axes in Figure 1a are in thousands of patents (orange line), of families (dark red line), and of
publications (orange line, Figure 1b). The dotted blue line depicts the average family size (Figure 1a, right axis).

rise in the rate of production of patents and publications. It is difficult to identify

precise reasons for these changes, other than the fact that they reflect the combined

increase in intensive margin (an increase in the use of patents by countries that have

traditionally already used this strategy of the appropriation of technologies), and

extensive margin (the use of intellectual property in countries that until then made

little use of this strategy). Of course, one explanation for the post-2010 acceleration

can be linked to the beginning of what AI researchers have called the “Deep Learning

era” (Sevilla et al. 2022), with the joint application of the backpropagation (a ma-

chine learning technique to train neural network algorithms) and graphics processing

unit (GPU) computing to the image recognition task in the ImageNet competition.

This marks the resurgence of interest in the so-called connectionist (that is, simply

put, neural-network based) AI after previous “AI Winters” (Vannuccini & Prytkova

2024). The observed drop in the number of patent applications and publications
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after 2020 is simply a consequence of the time-consuming activity of retrieving all

publication and patent data systematically. Therefore, it does not necessarily reflect

a real downward trend in the publication of AI-related documents. Altogether, we

observe that:

Finding 1. AI patent and publication production has increased over time, be-
ginning initially in the mid-nineties. The post-2010 period shows
an impressive rise in the rate of production of patents and pub-
lications. This acceleration is associated with the beginning of
the “Deep Learning era”, with the joint introduction of the back-
propagation technique and faster computing enabled by graphical
processing units (GPU), backed by the availability of large-scale
databases such as the ImageNet image dataset.

Table 1 provides the full list of techniques and functions used to classify patents

and publications in the Technique-Function-Application framework. Figures 5 and

6 display the frequencies of the patent documents and publications, respectively.

Not surprisingly, both figures 5 and 6 indicate over-dispersed distributions in the

number of patents and publications dedicated to techniques and functions. Figures

5 also show that all applications do not use AI with the same intensity. The fields

of transportation, life and medical sciences, security, and telecommunications are

clearly dominant in their use of AI. These differences may affect the estimation and

interpretation of specialization in each domain. Becoming an expert in deep learning

requires much more investment and resources than acquiring a specialization in fuzzy

logic. Although this issue is beyond the scope of this report, investing in the least

crowded technical or functional domains might be a positioning strategy for taking

the lead in niche areas, if any returns (scientific or economic) are to be expected

from that positioning.
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4.3 Location of invention

An important issue is to determine the location of the invention (in terms of country),

and the public or private organization that owns the invention. As our interest is

to locate and map AI-related competences, we use the country of residence of the

inventors identified by their personal address referenced in PATSTAT rather than

the country of the IP office (see insert 6).

Insert 6. Location of patents: IP office or inventors’ country of residency?

The location of patents can be determined by looking either at the location
of the office to which the intellectual property application is being sent, or
by the location of the inventor. Given that an inventor can submit a patent
application in a country other than that in which he or she lives, we cannot
interpret these two pieces of information in the same way.

An inventor files a patent application with the aim of obtaining rights over
his or her intellectual property. The patent gives its holder exclusivity to ex-
ploit the patented invention for a limited period (generally between 15 and
20 years), with the obligation to fully disclose the technical content of the
invention. An inventor therefore decides to patent an invention for two major
reasons: (i) the anticipated market is sufficiently large in terms of potential
demand; (ii) the probability of being imitated by a competitor is high. In
other words, assigning a patent to a country on the basis of the geographical
area of protection primarily reflects the country’s potential demand and only
secondarily the presence of those who have the ability to imitate the inven-
tion, meaning, the supply side. Conversely, locating a patent according to the
inventor’s residency primarily reflects the supply side (the local competences)
and only secondarily the potential demand.

In our opinion, the strategic challenge for countries is to develop the scientific
and technical skills that allow them to participate in the global effort to develop
AI. The fact that a patent is being developed by inventors from a particular
country implies that complementary investments, in terms of infrastructure,
researchers, engineers, national innovation system, networks, the underlying
education and professional training system, etc., have been made in the first
place.

The issue with using the inventors’ country of location is that that information

is missing in around 50% of AI patents. Therefore, we proceeded sequentially as

follows.
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1. PATSTAT. With variable “psn country code”, PATSTAT provides informa-

tion on the inventor’s location. Of 1,580,115 patents, we located the inventor’s

residency for 783,556 patents.

2. OECD REGPAT database. January 2024. REGPAT is an OECD database

that provides the location of nearly 19 million patents from PATSTAT (Maraut

et al. 2008). The ultimate goal of REGPAT is to link patents to NUTS3

regions, and therefore countries.

3. To complement this approach, we considered patents with only one inventor

and a family size of 1 (only one IP office). We also assigned the country of the

IP office as the country of invention.

By concatenating the different sources of information, we obtained 1,415,828

patents (93%) with a geographic location. It should be noted that a patent can

have several inventors. For example, a patent involving an American resident, a

German resident, and a French resident will be counted identically in the three

countries of the United States, Germany, and France. Concerning publications, the

information contained in Scopus allowed us to determine the location of the scientists

more straightforwardly, using the address of the affiliation of the authors. As for the

patents, we did not use weights to allocate publications to countries. If a publication

was written by authors from different countries, we counted the publication as many

times as there were countries rather than allocating weights to the countries.

Figure 7 provides preliminary evidence of the distribution of AI-related compe-

tences across countries. Although Europe is a collection of countries rather than

a country in itself, we considered it as a country. Europe, whether the European

Union or the Eurozone, has its own institutions, constitution-like treaties, and is

backed by a house of representatives whose members are chosen through European-
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Figure 7: Country frequencies in AI-related patents and publications
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Sources: EPO PATSTAT (Autumn 2023 edition) and Scopus (2023 edition). The number of inhabitants per
country is derived from the Penn World Tables version 10 (Feenstra et al. 2015). Number of patents and of

publications per million inhabitants. Authors’ own calculations.

wide elections. Therefore, given the objective of the report, we considered Europe as

giving rise to two countries: the European Union (the EU, with 27 member states)

and the Eurozone (the EZ, with 19 member states). We constructed the statistics

68



on patents and publication in the EU and the EZ by aggregating the information

about the individual member states.18. The top panel ranks countries according to

their contribution in terms of frequencies. The bottom panel normalizes the figures

by providing the number of patents and publications per million inhabitants.

Overall, the EU and the EZ rank high both in terms of publications and patents

when looking at absolute frequencies. However, there is still a gap between the EU

and both China and the US. The gap is far greater when it comes to patents. The

number of EU27 patents is almost a third of the number of US patents. In contrast,

the EU27 has 90% of the number of US publications. Even when discounting for

possible strategic and inflationary behaviors in publications and patenting from EU

competitors — as we cannot assume that the same strategies are not pursued by

European actors — the EU lags behind the US in AI-related knowledge generation

and inventions over the period covered by our data. Europe is very close to the US

in terms of scientific publications and far outranks China in this area.

Finding 2. There is a large gap between the EU, the US, and China in terms
of patent production and in the number of publications when com-
paring the EU with the US. The number of EU27 patents is almost
a third of the number of US patents. In contrast, the EU27 has
90% of the number of US publications.

When we normalize the measures in terms per inhabitants, the results for Europe

are far more dire. The EU ranks 17th in patent production per capita, while the EZ

ranks slightly higher, in 16th place. This result represents one fifth of the patents

per capita in the US. In the same fashion, the EU ranks 13th in per capita AI

publications, while the EZ ranks in 12th place. Europe performs better than China
18We excluded the United Kingdom from all EU statistics.
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in per capita AI-related publications. Therefore, the gap becomes more pronounced

when accounting for country size in AI patents and publications.

Finding 3. The EU ranks 17th in per capita patent production, while the EZ
ranks slightly higher, in 16th place. This result represents one
fifth of US per capita patents, and one twelfth of China’s. The
EU ranks 13th in per capita AI publications, while the EZ ranks
in 12th place. Europe performs better than China in per capita
AI-related publications.

These findings can be read through the critical take of Dosi et al. (2006) on the

European paradox. Traditionally, the paradox describes the gap between European

frontier science and its sub-optimal industrial application. The term is often used

to highlight failures in technology transfer and commercialization when compared

to the US. However, our results suggest that in the case of AI the paradox may

be more severe than originally conceived: the EU under-performs — relative to

the US — both in patent and publication production. The take-home message

is that the EU gap with the frontier is both science and innovation-based, rather

than only innovation-based. In addition, the quest for improving AI competences

is a transversal matter encompassing science, technology, and industrial policies. In

other words, a European AI policy should focus on supporting the basic knowledge

production of AI as well.

Finding 4. In the realm of AI, the European paradox may be more severe
than originally identified. The gap with the US is both science-
and innovation-based. The quest for improving AI competences is,
thus, a transversal matter encompassing science, technology, and
industrial policies.
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Another element to consider is the long-term impact of this gap. As knowledge is

for a large share cumulative, a lower accumulation of inventions compared to other

areas of the world might turn into a persistent disadvantage. If a critical mass of

knowledge production is needed to improve competitiveness and catch-up with the

frontier, Europe might never be able to fill the gap formed over the decades.

Finding 5. In virtue of the cumulative nature of knowledge, without achieving
a critical mass in AI-related innovation, the EU risks to be unable
to close the gap with the global frontier.

4.4 Actors

Innovation is seldom an individual activity; rather, it is the product of interactions

between a multiplicity of actors with complementary resources and skills. As with

many other high-tech products, the development of AI systems relies on four types

of actors: universities and public research laboratories, which act as producers and

repositories of basic scientific knowledge; large companies, mostly from high-tech

and digital industries, which are also increasingly involved in fundamental AI re-

search to shape the direction of the evolution of the technology (Ahmed et al. 2023);

investors, with a strong commitment from banks and venture capitalists, and star-

tups, generally small in size and developing AI applications building on received

knowledge and existing systems. The different policy initiatives observed in coun-

tries active in AI development aim, among other things, at supporting the interplay

between these four types of actors. In a sense, policies designed to orchestrate and

coordinate these interactions fall under the classic efforts to build national and sec-

toral systems of innovation (Malerba 2002), which is a useful perspective to take
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when discussing technological sovereignty in AI. As the AI industry itself evolves

with the technology, there are different taxonomies of AI actors in the literature. For

instance, Jacobides et al. (2021) distinguish among actors based on how AI systems

are produced and implemented (e.g., for re-sale or for in-house adoption). For our

purposes, we maintain the distinction outlined above between the four main supply-

side actors, as we can map the information contained in patent and publication data

directly to these types of actors.

In particular, in our analysis, we differentiate between private companies and

research institutes, regardless of whether the latter are public or private. On one

hand, private companies are key drivers of innovation. They seek economic gains by

creating new markets or increasing their share of existing ones. On the other hand,

the scientific community is a key part of the development of AI. AI is a science-based

domain, where the development of new algorithms combines upstream research in

statistics and computer science and downstream innovation closer to potential mar-

ket applications. Due to this significant overlap between fundamental and applied

knowledge in AI, public research institutions, including universities and research

institutes, are active players. To this end, we exploited the PATSTAT variable

“psn sector”, which may take the following labels: (i) natural person; (ii) business;

(iii) indeterminate; (iv) governmental organization; (v) non-profit organization; (vi)

university; and (vii) hospital. Using this approach allows us to classify a patent as-

signee as either a private company or a research organization, including universities,

public or private research institutes.

Tables 2, 3, 4, 5, 6 and 7 list the major private or public players in AI in the

world and in Europe. Table 2 identifies the top 20 private actors in the world active

in AI innovation. Over our period of analysis, the semiconductor company Intel and

the American giant IBM accounted for more than 20,000 patents each, representing
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Table 2: The top 20 worldwide private actors in AI patent production
Applicant Nationality # Patents # Family Quality

Intel United States 27,470 17,161 1.60
IBM United States 21,502 13,246 1.62
Samsung South Korea 18,696 8,922 2.10
NEC Japan 17,541 11,336 1.55
Microsoft United States 14,487 6,865 2.11
State Grid Corp. China 12,416 9,805 1.27
LG South Korea 10,472 5,111 2.05
Siemens Germany 10,208 5,508 1.85
Sony Japan 9,499 4,720 2.01
Google United States 9,287 3,739 2.48
Hitachi Japan 8,895 6,126 1.45
Baidu Online Technology China 7,870 5,873 1.34
Toshiba Japan 7,813 5,918 1.32
Huawei China 7,339 4,407 1.67
Fujitsu Japan 7,317 5,120 1.43
Philips Netherlands 7,247 2,964 2.45
Bosch Germany 6,882 2,312 2.98
Nippon Japan 6,559 5,512 1.19
Canon Japan 6,414 4,458 1.44
Tencent Technology China 6,337 4,135 1.53

Source: PATSTAT Autumn 2023 Edition. Calculations of the Authors.

30,000 patent families19 that protect inventions embodying AI-related components.

The South Korean high-tech manufacturer Samsung was ranked third, with almost

19,000 patents. Software producers such as Microsoft and Google ranked lower but

still accounted for 25,000 patents. In total, of the top 20 companies, there were

4 US companies, 13 Asian companies (among which 7 were Japanese, 4 Chinese,

and 2 South Korean), and only 3 European companies (2 German companies and 1

Dutch). However, European companies produced higher quality patents20

It is important to stress that the actors we identified with our patent analysis

do not necessarily earn revenues from AI products and services targeting final users.

Rather, they are large, established corporations, active in the business-to-business
19See Insert 4 for a definition of what a patent family is, and why it is important.
20the average invention quality is defined simply as the ratio of the number of patents over the

number of families. See Harhoff et al. (2003) for more details.
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Table 3: The top 20 European private actors in AI patent production
Applicant Nationality # Patents # Family Quality

Siemens Germany 10,208 5,508 1.85
Philips Netherlands 7,247 2,964 2.45
Bosch Germany 6,882 2,312 2.98
Nokia Finland 2,756 1,340 2.06
Bayer Healthcare Germany 2,584 989 2.61
Audi Germany 2,462 893 2.76
Volkswagen Germany 2,312 673 3.44
Airbus France/Germany/Spain 1,453 770 1.89
Alcatel France 1,190 763 1.56
Thales France 1,079 555 1.94
Ericsson Sweden 965 471 2.05
Accenture Ireland 918 437 2.10
Continental Automotive Germany 791 189 4.19
Sap Germany 744 489 1.52
StMicroelectronics Switzerland/France 638 375 1.70
Valeo France 610 184 3.32
Schaeffler Technologies Germany 396 15 26.40
Here Global Netherlands 393 191 2.06
Thomson France 293 170 1.72
Infineon Technologies Germany 214 64 3.34

Source: PATSTAT Autumn 2023 Edition. Calculations of the Authors.

domain. These actors are engaged in building the backbone of the AI technology

systems on which other actors can develop their solutions. The fact that EU com-

panies are under-represented in the ranking illustrates the European weakness in AI

production. Lacking continental-sized AI champions Fontana & Vannuccini (2024),

the EU foregoes its place on the technological frontier.

Finding 6. The top 5 players in AI-related patent production in the world
are: Intel (USA, with 27,500 patents corresponding to 17,000 in-
ventions), IBM (USA, 21,500 patents, 13,000 inventions), Samsung
(South Korea, 18,500 patents and 9,000 inventions), NEC (Japan,
17,500 patents and 11,000 inventions), and Microsoft (USA, 14,500
patents for 7,000 inventions).
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Table 4: The top 20 worldwide public actors in AI patent production
Applicant Nationality # Patents # Family Quality

Nanjing University China 12,667 10,633 1.19
Chinese Academy Of Sciences China 7,432 6,069 1.22
Zhejiang University China 7,265 6,200 1.17
Wuhan University China 5,685 4,789 1.19
Shandong University China 5,470 4,438 1.23
Harbin University China 5,145 4,318 1.19
Hangzhou University China 4,467 3,881 1.15
Beijing University Of Technology China 4,353 3,675 1.18
Chongqing University China 4,171 3,613 1.15
Jiangsu University China 3,988 3,216 1.24
University Of Electronic S&T Of China China 3,919 3,443 1.14
Tianjin University China 3,753 3,130 1.20
Tsinghua University China 3,584 2,910 1.23
Southeast University China 3,445 2,972 1.16
Xidian University China 3,410 2,986 1.14
Dalian University China 2,916 2,369 1.23
Beihang University China 2,870 2,440 1.18
South China University Of Technology China 2,796 2,288 1.22
Huazhong University China 2,286 1,863 1.23
Guangdong University Of Technology China 2,209 1,816 1.22

Source: PATSTAT Autumn 2023 Edition. Calculations of the Authors.

Finding 7. There are 3 European companies in the top 20 chart in AI-related
patent production: Siemens (Germany, with 10,000 patents cor-
responding to 5,500 inventions), Philips (the Netherlands,7,000
patents, 3,000 inventions), and Bosch (Germany, 7,000 patents and
2,300 inventions). These three companies produce higher quality
patents relative to their worldwide competitors.

Table 3 zooms in on the top 20 European AI (private) innovators as defined

through their patenting activities. Germany accounts for the lion’s share of the top

actors. As with the worldwide ranking, the top AI innovators are high-tech hardware

producers, with the mixed presence of actors in ICT and telecommunication devices,

heavy industry, automobile and aerospace, and semiconductors. A salient feature

of European innovators is that they produce higher quality patents relative to their
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Table 5: The top 20 non-Chinese public actors in AI patent production

Applicant Nationality # Patents # Family Quality

Northwestern Polytechnical University United States 2,057 1,712 1.20
Industry Academic Cooperation Foundation South Korea 1,989 1,227 1.62
Electronics And Telecom. Res. Institute South Korea 1,767 1,233 1.43
CSIP Spain 1,709 923 1.85
CNRS France 1,052 424 2.48
Advanced Institute Of S&T South Korea 861 540 1.59
University Of California United States 726 369 1.97
Seoul National University South Korea 619 375 1.65
INSERM France 591 259 2.28
Industrial Technology Res. Institute Taiwan 523 368 1.42
National Dong Hwa University Taiwan 432 347 1.24
UCL Business London United Kingdom 423 258 1.64
University Res.& Bus. Foundation South Korea 395 266 1.48
US Navy United States 387 278 1.39
Massachusetts Institute Of Technology United States 361 174 2.07
Fraunhofer-Gesellschaft Germany 355 103 3.45
Korea Electronics Technology Institute South Korea 313 183 1.71
CEA France 291 113 2.58
Carnegie Mellon University United States 225 105 2.14
IUCF Hanyang University South Korea 220 144 1.53

Source: PATSTAT Autumn 2023 Edition. Calculations of the Authors.

worldwide competitors.

Finding 8. The top 5 players in Europe in AI-related patent production are:
Siemens, Philips, Bosch, Nokia (Finland, 2,700 patents and 1,300
inventions), and Bayer Healthcare (Germany, 2,500 patents and
1,000 inventions). The top European AI innovators are high-tech
hardware producers, with a mixed presence of actors in ICT and
telecommunication devices, heavy industry, automobile and aerospace,
and semiconductors. European companies produce higher quality
patents relative to their worldwide competitors.

Tables 4 and 5 shift the focus from private to public actors. The worldwide

ranking (Table 4) is dominated by Chinese universities. National policies such as

“Made in China 2025” and subsidies and financial incentives from local governments
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Table 6: The top 20 worldwide actors in AI publication production

Applicant Status Nationality # Pub.

University of California System University United States 9,990
Chinese Academy of Sciences PPRI China 8,350
Carnegie Mellon University University United States 6,955
Centre National de la Recherche Scientifique (CNRS) PPRI France 6,259
Microsoft Entreprise United States 6,152
Tsinghua University University China 5,261
Massachusetts Institute of Technology (MIT) University United States 4,500
Swiss Federal Institutes of Technology Domain PPRI Switzerland 4,086
University of Illinois System University United States 3,965
Google Incorporated Entreprise United States 3,794
International Business Machines (IBM) Entreprise United States 3,786
Stanford University University United States 3,627
Nanyang Technological University University Singapore 3,556
University of Texas System University United States 3,409
University System of Georgia University United States 3,270
University of Chinese Academy of Sciences, CAS University China 3,258
University of London University United Kingdom 3,253
Peking University University China 3,084
Indian Institute of Technology System (IIT System) University India 2,993
University of Illinois Urbana-Champaign University United States 2,887

Source: SCOPUS 2023 Edition. Calculations of the Authors. PPRI: Public/Private Research Institute.

explain the over-representation of Chinese universities (Sun 2003). To gain a clearer

view of the positions of other actors, we excluded Chinese universities from the

ranking in Table 5. US and South Korean institutions accounted for 12 out of 20

positions in the ranking. Looking at Europe, large public research institutes such

as CSIP (Spain), CNRS and INSERM (for France), and Fraunhofer (for Germany)

made it to the ranking. Again, we observe that European public actors produce

higher quality patents than their non-European counterparts.
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Table 7: The top 20 European actors in AI publication production

Applicant Status Nationality # Pub.

Centre National de la Recherche Scientifique (CNRS) PPRI France 6,259
Max Planck Society PPRI Germany 2,226
Inst. Nat. Recherche en Informatique Appliquée (INRIA) PPRI France 2,115
Technical University of Munich University Germany 2,042
University Paris Saclay University France 1,905
Helmholtz Association PPRI Germany 1,510
Katholieke Universiteit Leuven University Belgium 1,326
Aalto University University Finland 1,280
University of Amsterdam University Netherlands 1,236
Technische Universität Wien University Austria 1,174
Sorbonne University University France 1,160
Delft University of Technology University Netherlands 1,064
University of Munich University Germany 1,032
Consiglio Nazionale delle Ricerche (CNR) PPRI Italy 1,015
Institut Polytechnique de Paris University France 977
Eindhoven University of Technology University Netherlands 954
Sapienza University Rome University Italy 938
IMT - Institut Mines-Telecom PPRI France 917
Siemens AG Entreprise Germany 909
Communauté Université Grenoble Alpes University France 909

Source: SCOPUS 2023 Edition. Calculations of the Authors. PPRI: Public/Private Research Institute.

Finding 9. Chinese universities are among the top 20 public organizations in-
volved in producing AI-related patents, but produce lower quality
patents. When focusing on non-Chinese public actors, US and
South Korean institutions account for 12 out of 20 positions in the
ranking. Looking at Europe, large public research institutes such
as CSIP (Spain), CNRS and INSERM (for France), and Fraunhofer
(for Germany) account for most AI-related patents. European pub-
lic actors produce higher quality patents that their non-European
counterparts.

Table 6 ranks the top actors worldwide in the domain of AI publications rather

than patents. The top players in AI-related science are essentially American (11

among the top 20 players) and Chinese (4 players). France (Centre National de la

Recherche Scientifique — CNRS), India (Indian Institute of Technology System —
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IITS), the United Kingdom (University of London), Singapore (Nanyang Technolog-

ical University), and Switzerland (Swiss Federal Institutes of Technology Domain)

also appear in the top 20 chart. The CNRS ranks fourth worldwide, and is the only

organization among the top 20 players belonging to the European Union. While AI

research occurs essentially within the university system, the world ranking provides

a glimpse of the ongoing process of the “industrialization” of AI outlined by Ahmed

et al. (2023), with some of the GAFAM at the forefront of AI-related scientific pro-

duction (with all this implies in terms of the “direction” of research, likely more

attuned to commercial priorities).

Finding 10. The top players in AI-related science are essentially American (11
among the top 20 players) and Chinese (4 players). France (Centre
National de la Recherche Scientifique — CNRS), India (Indian In-
stitute of Technology System — IITS), the United Kingdom (Uni-
versity of London), Singapore (Nanyang Technological University)
and Switzerland (Swiss Federal Institutes of Technology Domain)
also appear in the top 20 chart. Digital giants such as Microsoft,
Google and IBM appear as major players in AI science. The CNRS
ranks fourth worldwide, and is the only organization among the top
20 players belonging to the European Union.

Finally, Table 7 ranks the top European actors in AI publications. Overall, large

institutes in France and Germany lead the AI-related knowledge production in sci-

entific papers, specifically CNRS and INRIA for France, and the network of Max

Planck research centers for Germany. France has 7 top players (e.g. CNRS; INRIA;

and Université Paris Saclay), Germany has 5 players (e.g., Max Planck Society;

Technical University of Munich), the Netherlands has 3 players ((University of Am-

sterdam, Delft University of Technology, and Eindhoven University of Technology)

and Italy has 2 players (CNR and University of Rome La Sapienza). Other con-

tributing countries are, by decreasing order of contributions, Belgium (Katholieke

79



Universiteit Leuven), Finland (Aalto University), Austria (Technische Universität

Wien). The only company is the German industrial producer Siemens AG.

Finding 11. In Europe, AI-related knowledge production in scientific papers is
led by large institutes in France and Germany in primis, specifi-
cally, CNRS and INRIA for France, and the network of Max Planck
research centres for Germany. The only company involved is the
German industrial producer Siemens AG.

A final caveat should be expressed. In general, the types of actors that are

emerging as the top AI patent holders reflect both the censoring of our data to

2021 as well as one of the limitations of the dataset we use: only embedded AI is

patented. As a result, the actors that focus only on the development of AI algo-

rithms, such as the widely known OpenAI, Anthropic, the French unicorn Mistral,

and the booming set of startups created in the last few years are not part of the

picture. The fact that the main AI actors currently under the media spotlight are

not included in our data does not mean that our analysis is missing key structural

dynamics in AI innovation. On the contrary, it allows us to focus on industrial in-

novation in AI, which is the fundamental repository of knowledge and competences

capable of promoting widespread productivity improvements in user sectors and,

thus, international competitiveness.

Finding 12. Our overall impression is that European actors, both private and
public, are followers rather than leaders both in AI patents and
publications. While scientific production related to AI in the US
shows traces of “industrialization”, with private actors competing
with universities, in Europe large public research institutes con-
tinue to play the major role in AI knowledge production.
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4.5 Country specialization

A country is considered specialized when it develops a particular expertise relative

to other countries. Specialization relates to the concentration of resources — invest-

ments, human capital, distinctive skills — in given areas. It is different from the

notion of critical mass in that specialization does not require massive investments

in absolute terms. Rather, it refers to the allocation of resources among a portfolio

of possible destinations. Specialization in sciences or in techniques has been the

focus of attention of scholars in the literature on technical change, whether in firms

(Cantwell 1989, Dibiaggio & Nesta 2005) or countries (Nesta & Patel 2004).

One measure which has been used extensively is the so-called relative special-

ization index. Let Pc,d be the number of patents held by country c in AI domain

d, representing alternatively the technique t, the function f , or the application a

domains. For a given year, the relative specialization advantage RSA is defined by:

RSAc,d = Pc,d/ΣdPc,d

Σb̸=cPc,d/Σb̸=cΣdPc,d

, (1)

where d ∈ {t, f, a}, t = {1, 2, · · · , t, · · · , T}, f ∈ {1, 2, · · · , f, · · · , F}, and a =

{1, 2, · · · , a, · · · , A}.

The specialization index is the ratio of two proportions. The first — the nu-

merator — is specific to the actor. The second — the denominator — is relative

to all of the actors active in the field of interest, AI in our case. The numerator

represents the proportion of patents belonging to a given AI domain. The denomi-

nator represents the same proportion (the share of patents belonging to a domain)

for all other countries. In other words, the RSA measures the share of a domain’s

AI patents in all AI patents for a given country relatively to the same share for the

rest of the world. For example, between 2011 and 2021, France was granted 419
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patents in the AI technique “Probabilistic graphical models”, for a total number of

AI-related patents of 4846. This equates to 8.5% of patents in this AI technique.

Meanwhile, in countries other than France, this proportion amounts to only 6.4%.

Therefore, relative to other countries, France enjoys a specialization advantage of

1.35 (the ratio of 8.5 over 6.4), indicating that the domestic share of innovation in

a domain is relatively higher than the corresponding share for the rest of the world.

This index belongs to the zero-infinity interval (i.e. nRSA ∈ [0 ; +∞[), and

its pivotal value is unity. If this index exceeds unity, the focal country is more

specialized in the field compared to the rest of the world. Conversely, if the index is

lower than unity, the country is less specialized in the AI domain of interest relative

to the rest of the world. Without altering the interpretation of the indicator, and in

order to facilitate the visualization of the results, we normalized the specialization

index as follows:

nRSAc,d = RSAc,d − 1
RSAc,d + 1 , (2)

where nRSAc,d ∈ [−1 ; +1[, with a threshold value of nullity indicating whether

a country enjoys a relative specialization advantage (nRSA > 0) or disadvantage

(nRSA < 0). Applying this transformation to the previous example yields a nRSA

of +.15. Being positive, the index implies that France indeed enjoys a specialization

advantage in “Probabilistic graphical models”. Conversely, a value of −.64 informs

us that in “Generative AI”, France suffers from dis-specialization relative to other

countries.

As mentioned, one must not confuse specialization with critical mass in AI-

related patents. Critical mass relates to an absolute number of patents, concealing

substantial investments in both human capital, production equipment, and comple-
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mentary assets. In this respect, major players such as the United States or China

have reached a critical mass in nearly all AI domains. Instead, specialization re-

lates to the composition of AI-related patents among the different AI techniques,

functions, and application. Therefore, a country can be highly specialized without

holding a large number of patents. Returning to our example, although France en-

joys a relative specialization in “Probabilistic graphical models”, its absolute number

of patents in this techniques is far smaller than that of Japan (1,117). Nevertheless,

the latter has a negative specialization index nRSA = −.05.

Figures 8, 9 and 10 display country specific nRSA for the top 15 AI techniques,

functions, and applications for three periods: 1990-2000, 2001-2010, and 2011-2021.

We do not intend to comment on all countries or AI domains. Instead, we focus on

the three major geographic areas: Europe, the US, and China. We wish to stress

the following points.

First, the EU and the EZ have very similar specialization profiles in all AI tech-

niques, functions, and applications domains. Second, and more strikingly, relative

specialization changes abruptly in techniques, and to a lesser extent, functions. In

contrast, it exhibits more persistence over time with regard to applications. This

difference is not surprising. AI applications are downstream applications close to

economic activities, whereas techniques refer in general to upstream research activ-

ities. The AI value chain ranging from techniques to applications via AI functions

requires investments in complementary assets that become more significant from

one phase to another, yielding a natural persistence in the trajectories chosen by

public or private players active in downstream AI applications (David 1985, Arthur

1989). In other words, the persistence of specialization in application activities may

stem from the sunk costs necessary to run these activities, while the turbulence in

upstream specialization is facilitated by the more intangible nature of innovations in
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techniques and functions, which are less embedded and, thus, more flexible. An al-

ternative and complementary explanation has to do with the progressive upgrading

and substitution of the underlying techniques and functions powering innovation in

a certain AI application. By virtue of path dependence, the EU retains the capabil-

ity to innovate in applications in the long term. However, it does so by leveraging

new AI techniques and functions, sometimes produced domestically, and sometimes

sourced internationally. From this perspective, the turbulence in AI techniques and

functions results from a continuous exploration process as the AI field itself evolves

rapidly, which eventually feeds the specific applications in which the EU has a spe-

cialization advantage.

The analysis of specialization profiles in AI techniques shows that the EU is in-

volved in head-to-head competition with the US more than with China. The EU

is not very concentrated compared to other countries such as the US, China, or

Japan. Europe specializes in rule machine learning, learning and ontology engi-

neering and, to a lesser extent in expert systems and probabilistic graphic models.

These are areas where the US is also very present, generally demonstrating higher

levels of specialization. Interestingly, the EU specializes slightly more than the US

and slightly less than China in generative AI. The major difference between the EU

and the US is that the US industrial profile has changed dramatically from 1990

to 2022. The US used to be more diversified with high levels of specialization in

support vector machines, multi-task learning, supervised and unsupervised learn-

ing, classification and regression trees, and expert systems, all areas where the level

of specialization is now below 0. The Chinese profile has been more stable over

time and concentrated in different areas. For instance, China displays the highest

levels of specialization in support vector machine, fuzzy logic, and multi-task learn-

ing. China also specializes in generative AI, classification and regression trees, deep
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learning, and reinforcement learning. It is worth highlighting the similarity between

France and Germany in their profiles, with the noticeable exception of generative

AI, where France is absent. It is also interesting to see how diversified China and

Europe and its member states are. Unlike China, the EU, Germany, and France,

all other countries are very specialized with only three or four techniques exhibiting

positive levels of RSAs.

Finding 13. Concerning AI techniques since 2011, and by decreasing order of
specialization, the top five areas of specialization are as follows. In
Europe:

1. Ontology engineering
2. Rule learning
3. Machine learning
4. Generative AI
5. Probabilistic graphical models

In the US:
1. Rule learning
2. Machine learning
3. Ontology engineering
4. Probabilistic graphical models
5. Expert systems

In China:
1. Support vector machines
2. Fuzzy logic
3. Multi-task learning
4. Classification and regression trees
5. Deep learning

Focusing on the specialization profile in AI-related functions, the significant drop

of the EU in control methods, text-speech recognition, speech recognition, speaker

recognition, dialogue, and distributed artificial intelligence is striking. The EU keeps
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specializing in control methods (but less than the US) and computer vision. Char-

acter recognition and natural language processing are the only domains with higher

levels of specialization in 2022 than in 1990 (but their respective RSA remain below

0). Overall, the EU specialization profile in AI functions is quite weak, with only

three domains showing RSAs significantly greater than 0 (namely, control meth-

ods, computer vision and, to a lesser extent, scene understanding and video for

robotics). The US concentrates on AI dedicated to control methods, natural lan-

guage processing, text-speech and speech recognition. It also exhibits high levels

of specialization in dialogue and computer vision. The figure also shows that, over

time, the EU dramatically reduced its attention to information extraction, planning

and scheduling, image and video segmentation, and scene understanding and video

for robotics. Finally, China has dramatically increased its positions in information

extraction, image and video segmentation, planning and scheduling and semantics.

It remains inactive in distributed artificial intelligence and has almost withdrawn

completely from control methods. Looking at countries within the EU, Germany

has a very strong position in control methods, whereas France concentrates more on

character recognition. However, they both share high levels of specialization in com-

puter vision, and scene understanding and video for robotics. It is easy to suspect a

relationship between a specialization in AI functions and AI industrial applications.
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Finding 14. Concerning AI functions since 2011, the top five areas of special-
ization in decreasing order are as follows: In Europe:

1. Control methods
2. Computer vision
3. Scene understanding and video for robotics
4. Speaker recognition
5. Biometrics

In the US:
1. Control methods
2. Natural language processing
3. Speech recognition
4. Text-Speech recognition
5. Dialogue

In China:
1. Distributed artificial intelligence
2. Information extraction
3. Planning and scheduling
4. Image and video segmentation
5. Semantics

The European pattern of specialization in applications in both the EU and the

EZ is quite balanced with a relatively high degree of specialization in AI devoted to

the life sciences and entertainment. Interestingly, the profile of EU industry special-

ization has evolved over the 20 years of observations. The specialization in network

industries, business, and, to a lesser extent agriculture, has declined, but the special-

ization in cybersecurity has increased. Also interesting is the lack of distinctiveness

in specialization compared to the US. Indeed, the US is also specialized in entertain-

ment and even more concentrated on the life sciences and cybersecurity than the

EU. It also shares its weakness in energy maintenance and its moderate position in

banking and finance. The difference is that at one point the US shared the leader-
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ship in energy management with China, but became one of the weakest countries in

this domain. Finally, compared to Europe, the US is more specialized than Europe

in the application category labelled industry and manufacturing. China has a very

different profile with very high levels of specialization in AI devoted to agriculture,

telecommunications, industry and manufacturing, networks, neural networks, and

education. Note that China’s profile has remained stable over time. The only sig-

nificant progress made over the last 20 years is in business, document management

and text processing, and energy management at the expense of personal devices,

computing and HCI (human-computer interaction), and entertainment.

Finding 15. Concerning AI applications since 2011, the top five areas of spe-
cialization in decreasing order are as follows. In Europe:

1. Transportation
2. Life and medical sciences
3. Personal devices, computing and HCI
4. Energy management
5. Cybersecurity

In the US:
1. Personal devices, computing and HCI
2. Business
3. Document management and text processing
4. Banking and finance
5. Cybersecurity

In China:
1. Agriculture
2. Industry and manufacturing
3. Telecommunications
4. Education
5. Networks
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One last remark concerns the values taken by our specialization measure. Re-

call that positive values of the index denote specialization, with values closer to

1 implying significant specialization. One salient feature in the observed levels of

specialization is that Europe has systematically lower values, most of them closer

to 0, and sometimes below 0. These results suggest that Europe, unlike the US

and China, does not exhibit a specific specialization pattern with regard to AI tech-

niques, functions, and applications. After a closer look at individual countries, these

lower levels of specialization are the result of individual EU countries not exhibiting

clear patterns of specialization, more than the result of blending together countries

with different — and pronounced — specialization patterns.

Finding 16. Unlike the US and China, Europe does not display a specific spe-
cialization profile with regard to AI techniques, functions, and ap-
plications. This lack of specialization is the result of individual EU
countries not exhibiting clear patterns of specialization. Therefore,
there is no process of Ricardian specialization in European mem-
ber states, contrary to what we observe for the US or China. This
fact can provide a policy opportunity: through coordination and
support, the EU as a whole has a great deal of room for action to
steer the direction of AI development towards specific areas.

The nRSA index is a measure that characterizes the degree of specialization

of a country in a single AI domain. Alternatively, one could define specializa-

tion as a measure of the concentration of patents across the various AI domains–

techniques, functions, and applications. To measure this concentration, we use the

simple Herfindahl-Hirschman Index (HHI), defined as:

HHIc =
∑

d

α2
c,d (3)
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Figure 8: Normalized nRSA in AI techniques (patent data)
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1. Neural networks; 2. Machine learning; 3. Deep learning; 4. Unsupervised learning; 5. Reinforcement learning; 
6. Probabilistic graphical models; 7. Fuzzy logic; 8. Expert systems; 9. Classification and regression trees; 10. Supervised learning; 

11. Support vector machines; 12. Rule learning; 13. Generative AI; 14. Ontology engineering; 15. Multi-task learning.

Blue area is for period 1990-2000. Orange area is for period 2001-2010. Green area is for period 2011-2022
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Figure 9: Normalized nRSA in AI functions (patent data)
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1. Computer vision; 2. Biometrics; 3. Scene understanding and video for robotics; 4. Planning and scheduling; 5. Control methods; 
6. Speaker recognition; 7. Character recognition; 8. Semantics; 9. Text-Speech recognition; 10. Speech recognition; 

11. Natural language processing; 12. Information extraction; 13. Image and video segmentation; 14. Distributed artificial intelligence; 15. Dialogue.

Blue area is for period 1990-2000. Orange area is for period 2001-2010. Green area is for period 2011-2022
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Figure 10: Normalized nRSA in AI applications (patent data)
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Blue area is for period 1990-2000. Orange area is for period 2001-2010. Green area is for period 2011-2022
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where αc,d = Pc,d/ΣdPc,d, and where d is any of the particular AI techniques, func-

tions, and applications. This index is a measure of the concentration of patents in

particular fields. Its maximum value of 1 indicates that the actor’s patent produc-

tion is concentrated in a single field, while a minimum value closer to 0 indicates

that the patent production is diversified.21 If a country has a uniform distribution

of patents across AI domains, its degree of specialization is low. If, on the contrary,

its technological profile is very pronounced, its values come closer to unity.

Table 8 displays the concentration measures along the TFA value chain for a

limited number of countries. The top group displays the four main geographic areas

of interest: Europe (the EU and the EZ), China, and the United States. We then

grouped the countries together based on their geographic and economic homogeneity.

The second group consists of European countries. The third group includes Asian

countries. The last group consists of other OECD countries.

We note the following. First, overall, the values of the concentration index in-

dicate rather low levels of concentration across the entire value chain, implying

that countries have rather dispersed portfolios of competences across the AI TFA

value chain. Second, all countries exhibit higher levels of concentration in upstream

competences, meaning in their AI techniques, than in downstream functions and

applications. One way to interpret this finding is to imagine that countries “bet” on

one (or a subset of) technique(s) to become the dominant underlying engine of AI

systems in a given period, and therefore allocate inventive efforts in a more concen-

trated fashion. Alternatively, the result could reflect the progressive formation of a
21When the number of categories reaches infinity, the lower bound is indeed 0. In our case,

the number of categories is fairly low: 23 for AI techniques, 27 for AI functions, and 22 for AI
applications. Therefore, we must adjust the HHI index as follows: nHHIc = HHI−n−1

1−n−1 . Doing so
ensures the comparability of the measures across domains, and normalizes their range to the 0-1
interval. To keep the notation simple, we called our normalized nHHI, based on its non-adjusted
value HHI.
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Table 8: HHI index per country (period 1990-2021)

Patents Publications

Country name T F A T F

European Union 27 0.094 0.057 0.076 0.037 0.037
Euro Area 19 0.093 0.055 0.078 0.037 0.037
China 0.097 0.074 0.049 0.051 0.039
United States 0.101 0.047 0.051 0.045 0.042

Finland 0.118 0.048 0.057 0.042 0.032
France 0.088 0.063 0.075 0.043 0.038
Germany 0.094 0.061 0.101 0.040 0.044
Italy 0.098 0.052 0.077 0.036 0.034
Netherlands 0.112 0.065 0.098 0.039 0.036
Spain 0.086 0.069 0.095 0.035 0.033
Sweden 0.118 0.091 0.065 0.040 0.048

India 0.125 0.042 0.043 0.038 0.027
Japan 0.112 0.066 0.062 0.044 0.045
Singapore 0.129 0.101 0.063 0.044 0.037
South Korea 0.114 0.095 0.077 0.056 0.049
Taiwan 0.108 0.105 0.052 0.048 0.034

Australia 0.086 0.063 0.093 0.041 0.044
Canada 0.099 0.047 0.048 0.042 0.047
Israel 0.117 0.066 0.078 0.047 0.041
Switzerland 0.112 0.075 0.090 0.049 0.055
United Kingdom 0.115 0.062 0.060 0.035 0.034

See equation 3 for details about the HHI index. T: AI techniques; F: AI
functions; A: AI applications. Source: PATSTAT Autumn 2023 Edition.
Calculations of the Authors. Countries are grouped by geographic and
cultural homogeneity. The top group displays the four main geographic
areas of interest. The second group consists of European countries. The
third group includes Asian countries. The last group consists of other
OECD countries.

“dominant design” in AI techniques over time, with a few approaches preferred over

others. Third, Europe, whether the EU or the EZ, has medium levels of concentra-

tion values, and its constituent countries display levels of concentration values that

are similar to other non-European countries.
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Finding 17. The overall values of concentration along the entire value chain
are low. This finding suggests that countries have rather dispersed
portfolios of competences across the TFA value chain. There is
more concentration of effort in upstream competences, meaning
in AI techniques, than in downstream functions and applications.
AI techniques offer a range of services — functions and applica-
tions. Therefore, countries allocate inventive efforts to fewer AI
techniques, especially as some of them become dominant in the
field over time. Europe, whether the EU or the EZ, has medium
levels of median concentration values, and its constituent coun-
tries has medium levels of concentration values, and its constituent
countries display levels of concentration values that are similar to
other non-European countries.
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5 Measuring integration

Our conception of sovereignty is rooted in the idea that the portfolio of competences

of countries must be complementary to one another in order to yield services that

cannot be reduced to their independent use. Applied to the AI TFA framework,

sovereignty can be measured as the aggregate level of complementarity between the

various AI domains of expertise in AI techniques, functions, and applications. This

implies that one must quantify complementarity between techniques and functions

on one hand, and between functions and applications on the other. One can then

aggregate the complementarities over the value chains in which countries enjoy a

specialization advantage.

5.1 Complementarity between AI TFA domains

We exploited the fact that a single patent can be jointly assigned to techniques,

functions, and applications. For example, a patent might use the techniques of

“Probabilistic graphical models” to produce “Computer vision” services for “Trans-

portation”. Our intuition is that this combination constitutes a consistent, coherent

(Nesta & Saviotti 2005) value chain. More specifically, if we combined the tech-

niques, functions, and applications randomly, the number of possible combinations

to be analyzed would be extensive. Thus, the 23 techniques combined with the

27 functions might yield 22 applications, giving rise to more than 13,000 possible

value chains. Therefore, we claim that the actual combinations are meaningful and

suggest an order led by synergies.

Our goal is to develop a statistical measure of complementarity that exploits joint

frequencies. Similar to Teece et al. (1994), we base our measure of complementarity
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on the survival principle. We assume that combinations of techniques and functions,

and of functions and applications that are more productive are more complemen-

tary. We also maintain that they will occur more frequently than less productive

ones. Hence, we first counted the frequency of joint occurrences of techniques and

functions (what we call TF co-occurrences), and of functions and applications (what

we call FA co-occurrences). We then compared the observed TF and FA joint fre-

quencies with their expected ones, should such joint frequencies occur randomly.

An observed number of joint frequencies greater than their expected value reveals a

positive association, a “mutual” attraction, or, one could say, a complementarity be-

tween techniques and functions (alternatively, between functions and applications).

Conversely, should the expected frequencies exceed the observed ones, we would

conclude that the two AI domains exclude one another, and hence are not comple-

mentary to one another. Insert 7 provides the statistical details of our approach.
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Insert 7. Measuring complementarity

AI techniques and functions are complementary when their combination leads
to services that are not reducible to their independent use. To assess com-
plementary techniques and functions, we follow Nesta (2008) and quantify
complementarity between any AI technique t ∈ {1, 2, · · · , t, · · · , T} and any
AI function f ∈ {1, 2, · · · , f, · · · , F}. Let the technological universe consist of
K patent applications. Let Ptk = 1 if patent k is assigned to AI technique t,
and 0 otherwise. The total number of patents assigned to technique t is thus
Ot =

∑
k Ptk. In the same vein, let Pfk = 1 if patent k is assigned to AI

function f , and 0 otherwise. The total number of patents assigned to function
f is thus Of =

∑
k Pfk. The number Otf of observed joint occurrences of AI

technique t with AI function f is
∑

k PtkPfk.

Given this setting, let us now define a random variable Xtf as the number of
patents assigned to both technique t and function f under the assumption of
random joint occurrence. Then, Xtf can be considered a hypergeometric ran-
dom variable of mean µtf and variance σ2

tf as follows (population K, number
of successes Ot and sample size Of ):

µtf = E(Xtf = x) = OtOf

K
(4)

σ2
tf = µtf

(
K − Ot

K

)(
K − Of

K − 1

)
(5)

If the actual number Otf of co-occurrences observed between AI technique
t and AI function f greatly exceeds the expected value σ2

tf of random joint
occurrences, then technique t and function f are highly complementary. In-
versely, when Otf ≤ µtf , AI technique t and AI function f are deemed as
excluding one another, meaning they do not complement one another. Thus,
complementary τ is defined as follows:

τtf = Otf − µtf

σtf
(6)

Typically, τtf is a real number that can be positive or negative and may be
thought of as the degree of complementarity between couples of techniques and
functions. The same logic can be applied to quantify how AI functions apply
to specific AI-related applications. Define AI applications a such that a ∈
{1, 2, · · · , a, · · · , A}. Now let Pak = 1 if patent k is assigned to AI application
domain a, and 0 otherwise. The total number of patents assigned to AI-
related application a is thus Oa =

∑
k Pak. We then define µfa, σ2

fa and τfa

as, respectively:

µfa = E(Xfa = x) = Of Oa

K
(7)

σ2
fa = µfa

(
K − Of

K

)(
K − Oa

K − 1

)
(8)

τfa = Ofa − µfa

σfa
(9)

Again, τfa is a real number that can be positive or negative and may be
thought of as the degree of complementarity between couples of functions and
applications.
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Figure 11 displays the evolution of the distribution of τtf (panel a) and τfa (Panel

b) over the period of 1970 to 2020. Overall, the two panels display a strikingly similar

pattern in which, initially, complementarities, and their lack thereof, are poorly

defined. This pattern spans more than two decades, from 1970 to 1990. This initial

period corresponds to the phase in which ICT technologies became increasingly

pervasive in productive activities.

Figure 11: The dynamics of complementarity
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These graphs display the distribution of complementarity measures τ over time, from the minimum to the maximum
measures, and by darkening each every fifth percentile towards the median. Orange (resp. blue) colors depict
positive (resp. negative) complementarity measures τ . Source: EPO PATSTAT (Ed. Autumn 2023). Authors’ own
calculations.

From the early nineties to the late 2010s, we observe an increase in the vari-

ability of complementarities. Significant positive ones grow and, as in a mirror,

negative ones become clearer. This process exemplifies the fact that complemen-

tarities between AI techniques and AI functions, and between AI functions and AI

applications, become gradually identified, and others are ruled out as a result of ex-

perimentation. This second phase matches the systematization of AI developments

in scientific and applied fields. During this period AI continues to advance despite
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the lack of the widespread attention paid to it that it will receive from 2010 onwards.

Starting in the early 2010s, the last phase corresponds to the rise of deep learning-

driven AI as a well-bounded technology. It builds on the access to larger datasets

and better computational capabilities. These are the two conditions needed for AI

algorithms to be trained and expanded for a variety of potential uses. It is thus

not surprising to witness an increase in the range of the distribution, reaching very

high positive and negative values. These results indicate that the TFA landscape is

consolidating around better-identified sets of techniques, functions, and applications,

and determinations about how to combine them in a way that yields services that

cannot be reduced to their independent usage.

Finding 18. The TFA value chain of AI is becoming more and more structured
around better-identified combinations of techniques, functions, and
applications that, when linked together, yield services that cannot
be reduced to their independent usage. This development grows
in successive waves that suggest the possibility for future waves to
occur.

5.2 Integration as a measure of technological sovereignty

The fact that a country specializes in several AI techniques, functions, and applica-

tions raises the question of the consistency of specializations throughout the AI value

chain. For example, medical applications are essentially based on image and video

segmentation and, to a lesser extent, control methods and computer vision (func-

tions). However, image and video segmentation is largely based on unsupervised

learning and fuzzy logic techniques. Therefore, a coherent value chain for a country

specializing in medical applications suggests specialization in the relevant functions

and techniques. The degree of integration is an indicator of the complementarity of
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the innovation chain. It assesses a country’s ability to create and benefit from the

value produced from its areas of specialization.

The information contained in patents and their breakdown into AI techniques,

functions, and applications can be used to characterize the degree of integration of

the AI innovation value chain. We interpret technological sovereignty in AI as the

capacity to mobilize local AI-related competences to develop AI-related innovations:

a country will exhibit a degree of integration when it masters the competences that

appear to be complementary in the AI value chain. There are two ideas in this

intuitive definition. First, countries must exhibit specialization in some AI-related

areas, whether technical, functional, or application-related. Second, these exhibited

levels of specialization between techniques and functions, and between functions

and applications, must be complementary. Given this setting, and abstracting from

the country and time indexes, we measured the overall TFA integration for a single

application domain ΓT F A as in the following:

ΓT F A,a =
∑
t∈T

τtf × αt × ξt +
∑
f∈F

τfa × αf × ξf (10)

where τtf and τfa are defined as in Equations 6 and 9, respectively. Variables αt and

αf represent shares of techniques and functions in overall patents, i.e. αt = Pt/
∑

t Pt

and αf = Pf/
∑

f Pf , respectively. Last, variables ξt and ξf represent indicator

variables, taking value 1 if the normalised value of RSA in technique t and function f

are positive, 0 otherwise, i.e. ξt = 1(RSAt > 0) and ξf = 1(RSAf > 0), respectively.

To better understand the spirit of the measure, Figure 12 represents the AI

innovation value chain with three AI techniques, three AI functions, and three AI

applications. The result is 27 possible technique-function-application chains with

the total number of possible chains amounting to 1,000. Now let us imagine a
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Figure 12: AI innovation value chain for a fictitious country

country specializing in technique T2, functions F1 and F2, and applications A1

and A3, implying that ξT 1 = 1, ξF 1, ξF 2 = 1, and last ξA1 = 1 and ξA3 = 1.

The edges between the vertices represent the degree of complementarity between

the techniques, functions, and applications (τtf and τfa). Edges in bold represent

complementarities that are relevant for this country because they correspond to the

revealed areas of specialization. As Figure 12 indicates, there is a positive association

between technique T2 and the functions F1 and F2 (blue edges). In addition, there

is a negative association between the function F1 and the application A1 (red edge),

but a positive association with the function A3 (blue edges), unlike the function

F2. Overall, the degree of integration is the sum of the observed complementarities

(the bold edges) linking the vertices corresponding to areas of AI specialization.

This degree of integration can be either positive or negative, depending on whether

countries specialize in areas that complement or exclude one another. We interpret

this measure as indicating the complementarity between the TFA domains.

Take the European Union as an example. As we have already seen, the EU

specializes in “Ontology engineering”, “Rule learning”, “Machine learning”, “Gener-

ative AI”,“probabilistic graphical models”. It also specializes in “control methods”

and “computer vision”. Last, it serves “ Transportation”, “Life and medical sci-
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ences”, “Personal devices, computing and HC”, “Energy management” and “Cyber-

security” as destination markets. In total, for the EU, there are 7 techniques with

positive specializations, 2 functions and 5 applications with positive specializations

too, yielding 7 × 2 × 5 = 70 possible value chains. In addition, “Ontology engineer-

ing”, a technique in which the EU has its strongest comparative advantage, is never

combined with “Control methods”, and is only poorly complementary to “Computer

vision”, a function in which the EU has also developed a comparative advantage.

Finally, “Computer vision” and “Control methods” are both highly complementary

to “Transportation”, and also to “ Life and medical sciences”. The degree of in-

tegration is simply the sum of the degrees of complementarity observed (between

techniques and functions, then between functions and applications) along these 70

possible chains.

An important feature of our measure of integration is that it can be decomposed

into two parts such that ΓT F A,a = ΓT F,a +ΓF A,a, where ΓT F,a = ∑
t∈T τtf ×αt ×ξt and

ΓF A,a = ∑
f∈F τfa ×αf ×ξf . Doing so improves our ability to determine whether the

locus of integration is located more in upstream integrations (ΓT F,a) or downstream

integrations (ΓF A,a).

Figure 13 displays the levels of integration among the top patenting countries

over the TFA AI value chain. The yellow-red bar allows us to distinguish between

TF integration and FA integration: the length of the bar up to the yellow-red bar

represents the value of the integration over techniques and functions (TF integra-

tion), while the remainder of the bar represents the integration over functions and

applications (FA integration). Mean values are normalized to 1 for the frontier

value (India). As the figure indicates, Europe, whether the EU or the EZ, exhibits

one of the lowest levels of integration. The United States and China belong to the

other end of the spectrum, with values of integration reaching 60% and 80% of the
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Figure 13: Mean TFA Integration across countries (1991-2021)
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The overall bar represents the value of integration over the Technique-Function-Application value chain (T F A
integration). The darkened left hand side of the bar represents the value of integration over techniques and

functions - T F integration). The light-color right-hand-side of the bar represents the value of integration over
functions and applications (F A integration). Mean values are normalized to 1 for the frontier value (India).

Source: EPO PATSTAT (Ed. Autumn 2023). Authors’ calculations.

highest value in the dataset belonging to India. Within Europe, Italy displays the

highest level of integration, together with countries such as Finland, Sweden, and

the Netherlands. France and Germany have low levels of integration and drive the

overall poor performance of Europe regarding integration.
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Finding 19. Contrary to the United States and China, Europe exhibits low lev-
els of integration. Within Europe, Italy displays the highest level
of integration, together with countries such as Finland, Sweden,
and the Netherlands. France and Germany have low levels of inte-
gration.

Bearing in mind that what we wish to characterize is AI value chain sovereignty,

one may want to characterize it from the AI application domain where countries

specialize and wonder whether it is locally integrated. In other words, one key

aspect determining integration is the number of application areas where countries

specialize and see whether these exhibit positive values of integration. Figure 14

displays the number of AI application domains, averaged over the 1991-2021 pe-

riod, where countries exhibit actual specialization (nRSA > 0). Europe exhibits a

relatively high number of AI application domains where it has specialized, with a

value of about 8 domains, out of 22 possible application fields. However, only few

of them are not integrated, implying that technological sovereignty is not achieved

in most application areas where Europe has specialized. Conversely, the USA ex-

hibits not only a high number of application domains where it specializes (around

11 on average), but also an impressively high share of them is integrated (around

8 on average), implying technological sovereignty. Last, most European countries

have a relatively low number of AI application domains where they specialize, but

their share is also, on average, lower. Altogether, whether we focus on Europe as a

whole or individual countries, AI application domains with both specialization and

integration are rare in Europe, more than in other location in the world.
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Figure 14: Mean number of AI applications areas with positive nRSA (1991-2021)
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The overall bar represents the mean number of AI application domains where countries exhibit specialization
(nRT A > 0). The darkened left hand side of the bar represents the number of integrated AI application domains.

Source: EPO PATSTAT (Ed. Autumn 2023). Authors’ calculations.
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Finding 20. Europe exhibits a relatively high number of AI application do-
mains where it has specialized. However, many of them are not
integrated, implying that technological sovereignty is not achieved
over these areas of specialization. More fundamentally, whether
we focus on Europe as a whole or individual countries, AI applica-
tion domains with both specialization and integration are rare in
Europe, more so than in any other location in the world.

Figure 15 displays the dynamics of TFA integration between 1991 and 2021 for

the three major geographic areas: Europe, the United States, and China. As the

figure illustrates, while all three regions exhibited a similar level of integration until

2010, the dynamics followed somewhat different paths until 2015, with China’s level

of integration rising and that of the US and Europe declining substantially. We

find it striking that the advent of deep learning in 2012 and its subsequent diffusion

eventually translated into a significant decrease in integration in the three regions.

This phenomenon illustrates the fact that integration over the value chain is an

emerging property of the TFA specialization pattern, conditional on whether these

TFA domains complement one another. It may very well be that the specializa-

tion of countries remained unchanged, whereas the diffusion of deep learning into

a range of functions and applications redefined the most promising combinations of

AI techniques, functions, and applications.

Finding 21. The advent of deep learning in 2012 and its subsequent diffusion
eventually translated into a significant decrease in integration in
the regions considered. This phenomenon illustrates the fact that
integration over the AI value chain is an emerging property of the
TFA specialization pattern, conditional on exogenous technical
changes that countries drive only partially.
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Figure 15: The dynamics of AI TFA Integration in major geographic areas
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Authors’ own calculations.

Another appealing feature of our measure of integration is that it can indicate

whether each AI application in which a country specializes is rooted in a integrated

value chain. Using previous findings on specialization in AI applications, we are

now in the position to quantify each in terms of its normalized integration scores,

as displayed in Table 9.

We have three main observations. First, the integration scores are all positive.

This result implies that all value chains display positive complementarities on aver-

age, although some connections throughout the AI value chain may well be negative.

Second, the locus of integration may vary a great deal, whether we consider upstream

(ΓT F ) or downstream (ΓF A) integration. For example concerning “Transportation”
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Table 9: Integration score by top AI application specializations, by geographic area

AI application ΓT F A ΓT F ΓF A

Europe

Transportation 0.499 0.005 0.494
Life and medical sciences 0.334 0.067 0.267
Personal devices, computing and HCI 0.287 0.135 0.152
Energy management 0.266 0.067 0.199
Cybersecurity 0.295 0.125 0.169

United States of America

Personal devices, computing and HCI 0.330 0.064 0.265
Business 0.296 0.148 0.148
Document management and text processing 0.313 0.137 0.176
Banking and finance 0.296 0.157 0.140
Cybersecurity 0.302 0.214 0.088

China

Agriculture 0.327 0.216 0.111
Industry and manufacturing 0.370 0.069 0.301
Education 0.303 0.124 0.179
Networks 0.332 0.177 0.155
Telecommunications 0.306 0.136 0.170

Period 2011-2021. See equation 11 for details about the Γ index. T F A:
techniques-functions-application integration; T F : techniques-functions integration;
T F : functions-application integration. Source: PATSTAT Autumn 2023 Edition.
Calculations of the Authors.

in Europe, the locus of integration is clearly located in the functions to applica-

tions complementarities, as previously observed. In contrast, the complementarities

between techniques and functions are very poor. A similar pattern is evident con-

cerning “Energy management” in Europe, “Personal devices, computing and HCI”

in the US, and “Industry and Manufacturing” in China. Conversely, the locus of in-

tegration is located upstream in “Cybersecurity” in the US, and to a lesser extent in

“Agriculture” in China. All other areas have a somewhat more balanced pattern in

which there is integration throughout the entire value chain. Third, as exemplified

by “Personal devices, computing and HCI” or by “Cybersecurity”, two countries
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with significant specializations can exhibit different integration patterns. For ex-

ample, with regard to “ Cybersecurity”, integration in Europe is more balanced

throughout the TFA value chain than in the US, where integration is essentially

upstream (TF integration). In a similar fashion, with regard to “Personal devices,

computing and HCI”, whereas integration in Europe is more balanced, that of the

US leans more towards downstream complementarities (FA integration). Our inter-

pretation is that this heterogeneity conceals local systems of innovation throughout

the AI value chain involving specific public and private actors and specific sets of

collaborations and interactions.

Finding 22. The locus of integration may vary a great deal with regard to ar-
eas of specialization, depending on whether we consider upstream
(ΓT F ) or downstream (ΓF A) integration. There are both cross-
application variations (given the country) and cross-country varia-
tions (given the AI application). The heterogeneity in integration
throughout the value chain is the expression of local systems of
innovation throughout the AI value chain involving specific public
and private actors and specific sets of collaborations and interac-
tions.
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6 Technological integration and innovation

Taking stock of our argument and findings, we have measured technological sovereignty

as technological integration, that is, the ability to mobilize local competences that

appear to be complementary throughout the TFA AI innovation value chain. We

have found that China and the US have high levels of integration, higher than any

other country in the world, with the exception of India. Should Europe be consid-

ered a country, it has a lower level of integration, implying that it might be unable

to mobilize locally the competences needed throughout the AI value chain. In the

realm of AI applications Europe’s relative advantage in specialization rests on the re-

quired sets of AI functions, that themselves rely on locally available AI applications.

We have also identified the areas of AI applications in which Europe’s advantage in

specialization is unlikely to hold in the long run, insofar as it is not supported by

locally available complementary competences in AI functions and techniques. It is,

one could argue, footloose specialization in AI applications.

What remains unclear is whether and to what extent sovereignty, defined as

technological integration, and its measurement, actually matters for innovation in

AI. The next section explores whether integration represents a source of innovation,

above and beyond the chief role of the major determinants of patent production

such as knowledge stocks, specialization, and country size.

6.1 Is integration a source of innovation?

To explore whether integration represents a source of innovation, we estimated a

patent production function whereby new patents in a given area of AI applications

a stem from the relative specialization in AI application a (nRSAa), the existing
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stock of AI-related knowledge stock in patents and publication, measures of the con-

centration of patents across techniques, functions, and applications, and of course,

integration as measured in Equation 10. Insert 8 provides more details on the esti-

mating procedure and the series of control variables.
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Insert 8. Estimation of the patent production function

We consider a Cobb-Douglas patent production function whereby new patents
stem from an existing stock of knowledge, the latter being composed of both a
stock of patents and of publications. The inclusion of these two variables might
seem somewhat redundant at first glance. However, we maintain that these
two variables embody distinctive competences and types of actors. Therefore,
when introduced together, they characterize different combinations of incentive
structures supporting the creation of innovation (Dasgupta & David 1994).
Abstracting from subscript c accounting for country c, the model reads as
follows:

ka,1 = AKβK

0 SβS

0 C0
BC exp(BZZ0 + υa,1), (11)

where ka represent innovation in AI application a, and K and S represent
overall patent and publication stocks (irrespective of the application domain
a). Subscripts 0 and 1 indicate the timing of innovation, whereby additional
patents in 1 come from existing stocks at the beginning of the period (hence,
period 0). Note that we forward the dependent variable one year to avoid any
spurious correlation between the dependent variable and the vector of explana-
tory variables. We decompose the disturbance term υa,1 into a year specific
effect controlling for common shocks across countries, a country-application
fixed effect to control for unobserved but stable differences between country-
domains of application, and an iid disturbance term such that, respectively:
υa,1 = κy + ιc + ε.

Knowledge stocks, whether using patents or publications, are measured
using the permanent inventory method whereby new patents feed an existing
stock of past patents given a rate of obsolescence ϱ – set to 15% – such that
Kt = (1 − ϱ)Kt−1 + kt, where kt are new patents (when computing the patent
stock) or new publications (when computing the publication stock).

Vector Z includes the variables of interest: the level of expertise E and
the level of integration Γ, both being specific to application a, so that BZZ =
βEEa,0 + βΓΓa,0. What we call the level of expertise E is the relative spe-
cialization advantage RSA in application a. Integration is measured as in
Equation 10, and reflects the complementarity of the value chain between the
various domains of techniques and functions with application a. Finally, vec-
tor C represents a vector of controls, namely, population and GDP per capita
to control for both country size and wealth. We augment vector C with the
various measures of concentration HHI to control for the concentration of
expertise across techniques, functions, and applications. We also include a
variable “Openness” to control for international interactions between the na-
tional innovation system and other countries.a

Taking the log-transformation of Equation 11 allows us to estimate the
coefficient using least squares estimation methods.

aThis variable is computed as the share of co-patents with foreign institutions over
the overall number of patents for country c, relative to (i.e. divided by) the same share
pertaining to all other countries.
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Our intuition is that more integrated countries will be better equipped to produce

AI innovations, so that integration should support the production of new patents

in AI applications. Given that knowledge creation draws on knowledge stocks, we

expect the coefficient associated with patent stocks and publication stocks to be

positive. We also expect the coefficient for the degree of expertise to be positive,

implying that specialization in a given domain of applications has a positive effect

on the creation of future innovations.

Table 10 provides the results of specification 11. We introduce the variables of in-

terest sequentially, with the results appearing in Columns (1) to (4). In Column (1),

we introduce the main control variables of knowledge stocks (patent and publication

stocks), together with the normalized specialization index (nRSA). An important

difference between nRSA and the knowledge stock variables is that the latter do

not pertain to AI applications specifically. Hence, their parameter estimates can be

interpreted as the effects of knowledge capital in science and technology in general

on the generation of AI-related patents. Instead, specialization is AI application

specific, so that its parameter estimate must be interpreted as the effect of expertise

in the given application on the generation of future innovations.

Not surprisingly, all parameters are positive and significant, implying that the

level of expertise in AI applications and overall knowledge stocks are key ingredi-

ents of future innovation in AI-related patents. Regarding specialization (nRSAa),

a 1% increase in nRSA leads to a 46% increase in patent generation. By the same

token, a 1% increase in overall patent stocks leads to a 0.46% in AI-related patents

in specific applications. The significance of publication stocks in patent generation

corroborates the idea that innovation in AI is science-based. Hence, a 1% increase

in publication stocks leads to a 0.1% increase in AI-related patents. Finally, the

parameter estimates of the patent stocks is more than three times as large as that
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Table 10: TFA local integration and the production of quality-weighted innovation

(1) (2) (3) (4)

nRSAa 0.464*** 0.452*** 0.442*** 0.445***
(0.056) (0.056) (0.056) (0.056)

Patent Stock (ln) 0.359*** 0.360*** 0.291*** 0.294***
(0.031) (0.031) (0.031) (0.031)

Publication Stock (ln) 0.107*** 0.106*** 0.105*** 0.102***
(0.032) (0.032) (0.032) (0.032)

TFA Integration (ΓT F A) 0.022** 0.024** 0.074***
(0.010) (0.009) (0.021)

Openness -0.262*** -0.260***
(0.035) (0.035)

TFA Integration × Openness -0.023***
(0.008)

T Herfindahl (patents) -1.431*** -1.430*** -1.210*** -1.188***
(0.442) (0.443) (0.423) (0.425)

F Herfindahl (patents) 2.128*** 2.181*** 1.449*** 1.538***
(0.461) (0.463) (0.461) (0.463)

T Herfindahl (publications) 0.750** 0.745** 0.892*** 0.884***
(0.303) (0.302) (0.290) (0.289)

F Herfindahl (publications) 0.758*** 0.750*** 0.708*** 0.706***
(0.163) (0.163) (0.160) (0.159)

Population (ln) 0.037 0.052 0.596** 0.556**
(0.269) (0.269) (0.272) (0.272)

GDP per capita (ln) 1.425*** 1.419*** 1.439*** 1.434***
(0.099) (0.099) (0.095) (0.095)

R-squared 0.857 0.857 0.859 0.859
Within R-squared 0.197 0.197 0.206 0.207
Log Likelihood -7,840 -7,837 -7,791 -7,787
LR test - 5.44** 91.44*** 8.78***

N = 8, 268. Dependent variable: Quality-weighted number of innovation (number of
patents). Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. All
regressions include a full vector of unreported year fixed effects and country-field of appli-
cation fixed effects. Constant is omitted for the sake of clarity. The LR test is carried out
comparing the unrestricted model (m) with the restricted model (m − 1).
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of the publication stocks. This result is in line with the idea that experience in

patenting matters for future patent generation. Such experience includes problem-

solving activities specific to the development of inventions, above and beyond the

mere scientific challenges that it may embody. It also includes know-how in writing

patents, legal competences in intellectual property rights, etc. Beyond experience,

publications and patents do not necessarily come from the same institutions. For

instance, universities and public research institutions may focus their effort on pub-

lishing much more than patenting. Similarly, while the number of private compa-

nies involved in scientific research is limited, the number of private firms involved in

patenting is much larger. This factor might affect the relationship between publica-

tion stocks and patenting output. These aspects cannot be accounted for by looking

at scientific capabilities only, as evidenced in the publication stocks. These conclu-

sions hold for all models (Columns 1-4) displayed in Table 10, given the stability of

the parameter estimates.

One major finding of our study is the significant and positive effect of integra-

tion. It confirms our intuition that integration as such is a positive input in patent

creation. There are a number of reasons for this result. First, as suggested earlier,

when the necessary expertise throughout the value chain is developed locally, orga-

nizations find it easier and cheaper to identify and coordinate their activities rather

than searching for similar competences abroad. Second, the result also suggests the

existence of local clusters where the sharing of information, of human capital, and

their associated positive externalities act as positive ingredients for future innovation

(Romer 1990). Another important element is that value chain integration reduces

uncertainty, allowing for further complementary investments throughout the value

chain (Amendola & Gaffard 1998).

Observe that the previous remark holds irrespective of the diversity of the coun-
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tries’ portfolio throughout the AI value chain. More specifically, all models control

for the diversity of the countries in terms of AI techniques and functions, whether

stemming from technologies (as assessed by patents) or from science (as measured in

publication data). It is noteworthy that all concentration measures display positive

coefficients, implying that more concentrated investments around key techniques

and functions matter. The only exception to this contention relates to techniques

as measured in the patent data. Conversely, the diversification of AI techniques in

the patent data acts as a positive input for future innovation. Bear in mind that

Table 8 has revealed that the concentration of investments in upstream competences

is extensive, contrary to investments in downstream functions and applications. In

fact, these results show that efforts to diversify investments into more AI techniques

would be beneficial for innovation in AI applications.

Finally, in Columns (3-4), we introduce Openness, a variable measuring the

propensity of the country to engage in international collaborations in patent activ-

ity. In Column (3), Openness figures negatively, implying that more international

collaborations generate fewer patents pertaining to the country. This result does not

mean that international collaborations are detrimental to innovation in AI. Rather,

we interpret this result as a confirmation of the importance of local innovation sys-

tems. A strong propensity to collaborate with foreign partners reveals a lack of

equivalent expertise locally. As explained, searching for partners abroad is costly

and less stable relative to relying on local networks of partners. Furthermore, open-

ness also results in a loss of innovative opportunities for local partners throughout

the supply chain. Knowledge spillovers and innovation options generated by the

collaboration may benefit customers and suppliers in the partner’s country.
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Finding 23. Integration is a source of innovation as it is a significant contrib-
utor to patent production. This finding suggests that developing
local expertise throughout the entire value chain increases the in-
novative capacities of a country in AI-related innovation in specific
application domains.

Finding 24. Other factors matter for innovation in AI. First and foremost, spe-
cialization in specific AI applications and overall knowledge stock
are prime factors in patent production. Second, the innovation ca-
pacity of a country in AI is associated with the ability to develop a
diverse portfolio of expertise in technical domains while concentrat-
ing investments in the development of a limited number of specific
application domains and functions. A last but important finding
relates to the negative effect of the propensity to collaborate with
foreign partners, which confirms the important advantage of local
innovation networks.

A key feature of our measure of integration is that it allows us to identify the

distinctive role of upstream versus downstream integration. To do so, we simply

need to rewrite Vector Z as βEEa,0 + βΓT F
ΓT F,a,0 + βΓF A

ΓF A,a,0. Coefficients βΓT F

and βΓF A
and their difference will provide information about the locus of integration

as a source of future innovation. Table 11 re-runs the analysis exploiting the possi-

bility of separating the upstream and the downstream integration effects. The signs,

magnitude, and significance of the coefficients for the key variables tested (nRSA,

patent and publication stocks, Openness) are stable compared to the results of the

regressions with aggregate TFA integration. In this new setup, both the TF and FA

integrations are positive and significant, indicating that AI inventions are enabled

both by the alignment of competences between techniques and functions and be-

tween functions and applications. Models (7) and (8) consider TF integration based
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on publications rather than patents. Our goal is to capture the more science-based

competences embodied in the technique-functions pairs, and possibly to identify

the different actors involved. The coefficient related to TF integration based on

publications loses its statistical significance, but re-acquires it when the interac-

tion term with Openness is introduced in specification (8). One way to interpret

the result is that TF integration feeds innovation, but only when the competences

are developed domestically rather than by sources far from the local context. FA

integration based on patents reveals similar insights. Openness affects innovation

negatively both overall and when interacted with the integration terms. This result

suggests that sourcing knowledge outside the local innovation systems reduces in-

vention incentives and weakens the power of integration to produce new knowledge.

All in all, this evidence supports the idea that technological sovereignty can enhance

innovative performance.

Finding 25. Innovation in AI results from integration both upstream (techniques-
functions) and downstream (functions-applications).
Openness tends to reduce AI innovation, as it weakens the power
of integration to produce new knowledge in the realm of AI.

6.2 The determinants of integration as sovereignty in AI

If integration — and, thus, technological sovereignty — favors innovation in AI, what

factors favor integration? With our data, we can explore the organizational origins

of integration at a granular level. Doing so illustrates the key modalities through

which integration is built, and may also represent an actionable policy lever. In

Table 12, we relate TFA integration (Model (9)), TF integration (Model (10)), and

FA integration (Model (11)). We can distinguish between private and public actors
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Table 11: Partitioning upstream TF and downstream FA integration and the pro-
duction of quality-weighted innovation

(5) (6) (7) (8)

nRSAa 0.441*** 0.445*** 0.443*** 0.444***
(0.056) (0.056) (0.056) (0.056)

Patent Stock (ln) 0.269*** 0.272*** 0.290*** 0.282***
(0.031) (0.031) (0.031) (0.031)

Publication Stock (ln) 0.097*** 0.093*** 0.111*** 0.135***
(0.032) (0.033) (0.033) (0.034)

TF Integration (ΓT F ) 0.062*** 0.069***
(0.013) (0.019)

FA Integration (ΓF A) 0.016* 0.064*** 0.017* 0.069***
(0.009) (0.020) (0.009) (0.021)

Openness -0.281*** -0.279*** -0.259*** -0.246***
(0.035) (0.036) (0.035) (0.035)

TF Integration × Openness -0.004
(0.008)

FA Integration × Openness -0.022*** -0.024***
(0.008) (0.008)

TF Integration (publications) 0.010 0.080***
(0.010) (0.018)

TF Integration (pub.) × Openness -0.031***
(0.008)

R-squared 0.859 0.859 0.859 0.859
Within R-squared 0.209 0.210 0.206 0.209
Log Likelihood -7,779 -7,775 -7,792 -7,777
Model Comparison (5) vs. (3) (6) vs. (4) None (8) vs. (7)
LR test 24.82*** 24.84*** - 30.21***

N = 8, 268. Dependent variable: Quality-weighted number of innovations (number of patents). Robust
standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. All regressions include a full vector
of unreported year fixed effects and country-field of application fixed effects. The constant is omitted
for the sake of clarity. The vector of control variables includes the series of Herfindahl indexes of
AI techniques and AI functions derived from patents and publications, and population and GDP per
capita entered in logs. Models (7) and (8) use relatedness measures and shares of techniques and
functions derived from publication data.
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and combinations thereof (private-private, public-public, and public-private collab-

orations). Indicators of Openness and knowledge stocks (patents and publications)

are included as well. With regard to TFA integration (Model (9)), collaborations

amongst private actors are related to more integration. Private actors seem to play

a positive role in enhancing TF integration, with public assignees being character-

ized by a significant but negative coefficient. FA integration is positively related

to the presence of public actors. The stock of patents is significantly related to

integration in all specifications, negatively for TFA and FA and positively for TF.

These results suggest that prior knowledge is important for connecting complemen-

tary competences at the more technological level, while it hinders integration at the

more market-proximate layer of the value chain. Interestingly, Openness has a posi-

tive and significant effect on TFA, TF, and FA integration. A possible interpretation

of this result, especially when compared to the innovation analysis, is that an “open

first, closed then” strategy might be at work. Local actors can develop or diversify

their competences in AI by interacting with international partners. Once the com-

petences are formed, local integration favors the production of new knowledge. In

a nutshell, AI innovators trade openness at the competence-development stage for

less openness at the innovation stage.

Finding 26. When focusing on the organizational origins of integration, we can
see how TF integration is fostered by private actors, while TA
and overall TFA integration is enhanced by the presence of public
assignees. Collaborations between private actors enhance integra-
tion overall. Openness and integration are positively related across
TF, FA, and TFA, suggesting that AI innovators can develop or
expand competences by connecting internationally. In the second
stage, the resulting higher level of domestic integration will have a
positive effect on innovation.
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Table 12: The determinants of integration as sovereignty in AI

(9) (10) (11)

Private assignee (ln) 0.038 0.280*** 0.004
(0.049) (0.039) (0.049)

Public assignee (ln) 0.066** -0.093*** 0.080**
(0.033) (0.025) (0.033)

Private-Private coll. (ln) 0.153*** 0.388*** 0.105***
(0.034) (0.025) (0.034)

Public-Public coll. (ln) -0.008 -0.083*** 0.002
(0.018) (0.016) (0.018)

Public-Private coll. (ln) -0.028 0.033* -0.035
(0.022) (0.017) (0.022)

Openness 0.160*** 0.340*** 0.120***
(0.040) (0.030) (0.040)

Patent Stock (ln) -0.192*** 0.113*** -0.204***
(0.041) (0.038) (0.041)

Publication Stock (ln) 0.038 -0.007 0.043
(0.036) (0.028) (0.036)

R-squared 0.451 0.632 0.441
Within R-squared 0.010 0.103 0.080
Log Likelihood -9,263 -7,608 -9,335

N = 8, 268. Dependent variable: T F A integration in model (9). T F in-
tegration in model (10). F A integration in model (11). Robust standard
errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. All regressions
include a full vector of unreported year fixed effects and country-field of
application fixed effects. The vector of control variables includes patent
stocks, publication stock, population and GDP per capita, all entered
in logs. Constant is omitted for the sake of clarity.
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We can delve into more detail about the organizational aspects that are relevant

to the production of AI innovation. Figure 16 depicts each country’s performance

in AI patenting on a normalized scale, using seven different organizational types:

patents assigned to private or public companies, combinations of their collaborations

(private-private; public-public; private-public), solo patents, and international col-

laborations. The major insight that can be derived from a visual inspection of Figure

16 is that there are two broad “regimes” a country can fall into: one roughly ori-

ented around the axis connecting private-private collaborations and international co-

patenting, and the other placing more weight on public and public-private patenting.

The US, Canada, the UK, Germany, and Israel tend to fall into the first category.

China, South Korea, and France tend to come closer to the second. Interestingly,

the EU and EZ seem to represent the joint features of the two “classic” engines of

the integration of the Union: France and Germany, with public and international

co-patents playing a pivotal role in AI innovation.

Finding 27. Different countries display different profiles in terms of the types of
actors and organizations involved in AI (patent) innovation. Two
general regimes seem to emerge: one innovating through private
and international collaborations, and the other through public and
private-public co-patenting. Germany and France epitomize the
two different regimes, while the EU and EZ seems to innovate as a
linear combination of the two. This finding illustrates, once again,
the opportunities for AI innovation at the continental level, which
could rely on a broader group of innovating organizations.
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Figure 16: The organizational characteristics of countries in AI-related patent pro-
duction
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7 Conclusion

In a world characterized by increasing geo-political and geo-economic rivalries, the

idea the countries should strive to increase autonomy and resilience in the produc-

tion of key, economy-impacting technologies is rapidly gaining momentum. The

ongoing discussion has revolved around the notion of sovereignty, and in particular

technological sovereignty, as a handful of key, enabling and breakthrough technolo-

gies are considered strategic assets to lead in the global context. In a nutshell, a

consensus is emerging around the fact that addressing the competitiveness challenge

requires not to dismantle globalization, but to improve domestic capabilities and re-

silience — and that, in turn and especially for Europe, imposes the need of financing

substantial fresh investments (Draghi 2024).

In this report, we contribute to this ongoing debate by assessing sovereignty in

a specific technology — artificial intelligence — and in a well-defined context — the

European Union. We decided to adopt a rather focused approach by defining AI

sovereignty as a set of competencies that enables countries to gain control over the

entire AI innovation value chain. The rationale for that relies on the fact that AI has

the potential to become an ubiquitous element of future economic activities, and thus

a required tool in the toolbox of countries’ technological capabilities. Given that, our

definition of AI sovereignty emphasizes a fundamental yet often overlooked aspect:

the competency dimension of sovereignty. We propose a quantitative indicator to

measure AI sovereignty: the integration of innovation competences along a stylized

AI value chain. Following our analysis, we derived a large set of findings, which can

be summarized in the following conclusions.

1. Of all geographic areas covered, the EU is the least integrated, implying that
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Europe masters too few AI value chains. This is in sharp contrast with the

United States and China. Neither do individual member states countries ex-

hibit a high level of integration.

2. Compared with other major area such as China and the United States, the

EU lags behind in terms of patent production and, to a lesser extent, in terms

of scientific contribution.

3. Because integration enhances future innovation, lack of integration represents

a problem for the EU, implying that the gap with other major areas in the

world is most likely to widen in the years to come.

4. Accumulation of patents and publications is slower in Europe compared to

other areas of the world. This implies that the gap of the EU to the frontier

might become permanent; without reaching a minimum critical mass, the EU

is poised to lose the race to become a major player in the field of artificial

intelligence.

5. Closing the integration gap would require not only additional public and pri-

vate investments into a series of complementary assets and scientific projects

as well as the involvement of a wide variety of actors, but also some form of

continental coordination between European actors, in order to form a comple-

mentary, Europe-wide AI value chain.

The lack of integration (and thus sovereignty) in European AI can be seen as

a call to (policy) action. Coupled with the evidence of insufficient private invest-

ment in ICT infrastructure, databases, and software within Europe, a key insight

to derive is that the scope for improvement is vast. Hence, we find limited grounds
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for optimism regarding the future development of a so-called European AI industry.

Based on our findings, we envisage two avenues to follow. On the one hand, the

EU needs a “big push” in terms of additional investments. Exogenous shocks in the

forms of heavy public programs, as advocated by Aghion et al. (2024) in the case of

France and by Draghi (2024) for the whole Union are more than necessary. On the

other hand, the issue is not exclusively quantitative. Efforts in developing a com-

mon understanding of the directionality of investments, for instance by allocating

scientific and technological funding to directions entailing high returns (Fuest et al.

2024) is also a fundamental challenge to tackle. Our report indicates that a critical

yet unrealized factor is the enhancement of EU governance. Strengthening EU gov-

ernance is necessary to provide increasing coordination between stakeholders within

and between European countries and European institutions is needed in order to

build a fully integrated continental AI industry, one that would substantially and

structurally enhance European sovereignty in artificial intelligence.
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